
QCArchive Documentation
Release 1.0

Daniel G. A. Smith

Feb 01, 2020

OVERVIEW

1 Layered Infrastructure 3

2 Project Highlights 5

3 Project Demos 7

4 Supported by 9

i

ii

QCArchive Documentation, Release 1.0

The infrastructure that powers the MolSSI QCArchive is a series of open-source layers that can be used for a variety of
projects and use cases. Every piece of software that we develop is available on GitHub and supported by the MolSSI
team.

At the outermost scope, the QCArchive infrastructure allows you to privately generate and manage data precisely as
we do in QCArchive, running calculation and performing statistical and visual analysis without ever interacting with
the MolSSI servers. At a later date (perhaps post-publication), if you would like to upload your data to the MolSSI
servers, it is a very quick and easy process!

OVERVIEW 1

https://qcarchive.molssi.org
https://qcarchive.molssi.org/team/
https://qcarchive.molssi.org/team/

QCArchive Documentation, Release 1.0

2 OVERVIEW

CHAPTER

ONE

LAYERED INFRASTRUCTURE

While the infrastructure projects can be used together to manage data at scale, each library we support has capabilities
that can be used independently:

• QCElemental - Periodic table information, version-controlled physical constants, molecule parsing, testing in-
frastructure, and MolSSI QCSchema models.

• QCEngine - Quantum chemistry program executor and IO standardizer (QCSchema).

• QCFractal - Distributed task scheduler and executor, database store for chemistry results, and organization of
results at scale.

• QCPortal - Visualization, organization, and statistical analysis for chemistry-related results and a front-end client
for QCFractal.

3

http://docs.qcarchive.molssi.org/projects/qcelemental
https://molssi-qc-schema.readthedocs.io/en/latest/index.html
http://docs.qcarchive.molssi.org/projects/qcengine
http://docs.qcarchive.molssi.org/projects/qcfractal
http://docs.qcarchive.molssi.org/projects/qcportal

QCArchive Documentation, Release 1.0

4 Chapter 1. Layered Infrastructure

CHAPTER

TWO

PROJECT HIGHLIGHTS

A few software projects using the QCArchive infrastructure are:

• Psi4 - A quantum chemistry package which uses QCElemental for physical constants and QCEngine to compute
additive properties such as DFTD3.

• geometric - A backend-agnostic geometry optimizer which uses QCEngine to evaluate gradients for a variety of
different quantum chemistry-like packages.

• MultirefPredict - Multireference character prediction using QCElemental for model implementations and
QCEngine to harness many quantum chemistry backends simultaneously.

5

http://psicode.org
https://github.com/leeping/geomeTRIC
https://github.com/hjkgrp/MultirefPredict

QCArchive Documentation, Release 1.0

6 Chapter 2. Project Highlights

CHAPTER

THREE

PROJECT DEMOS

To highlight the capabilities of each project, short demos were created. Full details are available in each project’s
Documentation page which can be found in the dropdown at the top of this page.

• QCElemental

• QCEngine

• QCFractal

• QCPortal

7

basic_examples/QCElemental.html
basic_examples/QCEngine.html
basic_examples/QCFractal.html
basic_examples/QCPortal.html

QCArchive Documentation, Release 1.0

8 Chapter 3. Project Demos

CHAPTER

FOUR

SUPPORTED BY

The QCArchive infrastructure is supported by the Molecular Science Software Institute and the National Science
Foundation.

Additional features are sponsored by our partners:

• Open Force Field Initiative

Consider becoming a feature sponsor today!

4.1 Software Philosophy

4.1.1 Open-source infrastructure

The QCArchive project is designed from the start to be open-source and available to the computational molecular
sciences community. The entire code base is public through GitHub repositories, and we are contributing back to
other Open Source projects as good members of the community. Rather than a monolithic piece of software, the
QCArchive software infrastructure is decomposed into several components so that it can be used as a full ecosystem
to build on top of or in support of community software.

4.1.2 Code quality is of utmost importance

The quality of the QCArchive code is checked through rigorous continuous integration, code linters, and test coverage
tools which help reduce the chance that bugs are introduced. We take data accuracy very seriously and all results and
calculations are versioned, provenance tracked, and will be preserved over any updates of the database.

9

https://molssi.org
https://www.nsf.gov
https://www.nsf.gov
https://openforcefield.org
community.html#work-with-us

QCArchive Documentation, Release 1.0

4.1.3 We support software best practices

QCArchive’s projects are all based on the same software best practices. Both users and developers can follow the code
structure between all of the projects, and these practices are provided back to the community through external projects
like the CMS-Cookiecutter. This cookiecutter supports:

• Continuous integration with automated testing and testing coverage.

• Automated versionsing and package distribution via Conda-Forge and PyPI.

• Code quality and linting checks for beutiful code.

• Automatic package organization and documentation setup.

The cookiecutter is available for all Python projects! Check it out here!

4.2 Community

The QCArchive is an open community sponsored by The Molecular Sciences Software Institute. However, this is a
community-driven project which requires feature requests, user feedback, and code support. There are a variety of
ways to help support the QCArchive project as seen below.

4.2.1 Discussion

• QCArchive Slack is a great place to get feedback and advice from the community. Join our Slack group to get
started.

• The QCArchive GitHub repositories contain future roadmaps, current code updates, and a list of issues that are
being worked and provide an excellent overview of the development status of the project.

4.2.2 Work with us!

The QCArchive project is actively looking for early collaborations to use our tools, help us shake out the bugs, and be
evangelist within the computational molecular science community for this code ecosystem. In return you will receive
the following benefits:

• Work directly with MolSSI Software Scientist who will discuss your problem and provide ideas.

• Develop the requirements and potential solutions for your use case within the QCArchive ecosystem.

• Setup monthly meetings to ensure your project stays on track.

• Highlight your project within the QCArchive ecosystem.

If you are interested in working with us, please send an email to QCArchive@molssi.org and we will set up a meeting
to discuss specifics.

You can run this notebook online in a session or view it on Github.

10 Chapter 4. Supported by

https://github.com/MolSSI/cookiecutter-cms
https://github.com/MolSSI/cookiecutter-cms
https://molssi.org
https://join.slack.com/t/qcarchive/shared_invite/enQtNDIzNTQ2OTExODk0LTE3MWI0YzBjNzVhNzczNDM0ZTA5MmQ1ODcxYTc0YTA1ZDQ2MTk1NDhlMjhjMmQ0YWYwOGMzYzJkZTM2NDlmOGM
mailto:qcarchive@molssi.org
https://github.com/MolSSI/QCArchiveInfrastructureWebsite/blob/master/basic_examples/QCElemental.ipynb

QCArchive Documentation, Release 1.0

4.3 QCElemental

QCElemental is a general purpose utility library that covers many fundamental areas of practical quantum chemistry:

• QCSchema models for input and output

• Molecule parsing

• Unit support

• Canonical physical quantities

Full QCElemental documentation is available.

4.3.1 Molecule Parsing and Models

[1]: import qcelemental as qcel

The MolSSI QCSchema has been implemented in utility classes within QCElemental. Models can be created in a
number of different ways, here we pull caffeine from pubchem.

[2]: qcel.models.Molecule.from_data("pubchem:caffeine")

Searching PubChem database for caffeine (single best match returned)
Found 1 result(s)

Data type cannot be displayed: application/3dmoljs_load.v0, text/html

[2]: <Molecule(name='IUPAC 1,3,7-trimethylpurine-2,6-dione' formula='C8H10N4O2' hash=
→˓'a9e3599')>

More canonical forms are also available, for example we can import a geometry from a string:

[3]: water = qcel.models.Molecule.from_data("""
-1 2
O 0 0 0
H 0 0 1
H 0 1 0
""")
water

Data type cannot be displayed: application/3dmoljs_load.v0, text/html

[3]: <Molecule(name='H2O' formula='H2O' hash='647b11e')>

In addition to visualization, there are many helper functions which can provide data about the molecule or can perform
a variety of actions. It should be noted that all quantities are in atomic units.

[4]: print(f"Molecular Charge: {water.molecular_charge}")
print(f"Molecular Multiplicity: {water.molecular_multiplicity}")
print(f"O-H distance (Bohr): {water.measure([0, 1])}")
print(f"H-O-H angle (degrees): {water.measure([1, 0, 2])}")
print("\nWater coordinates (Bohr):")
print(water.geometry)

4.3. QCElemental 11

http://docs.qcarchive.molssi.org/projects/QCElemental
https://github.com/MolSSI/QCSchema

QCArchive Documentation, Release 1.0

Molecular Charge: -1.0
Molecular Multiplicity: 2
O-H distance (Bohr): 1.88972613
H-O-H angle (degrees): 90.0

Water coordinates (Bohr):
[[0. 0. 0.]
[0. 0. 1.88972613]
[0. 1.88972613 0.]]

4.3.2 Unit Support

Unit conversion between arbitrary units is supported out of the box. By default, 2014 CODATA is used.

[5]: qcel.constants.conversion_factor("bohr", "Angstrom")

[5]: 0.52917721067

[6]: qcel.constants.bohr2angstroms

[6]: 0.52917721067

Compound units are input with python-like syntax.

[7]: qcel.constants.conversion_factor("hartree / bohr ** 2", "eV / inches ** 2")

[7]: 6.269253498179915e+18

In addition to straight conversion factors, QCElemental supports Pint Quantity objects. Python floats and numpy
arrays are supported for values.

[8]: distance = qcel.constants.Quantity("3 Bohr")
print(distance)
print(distance.to("mile"))

3 bohr
9.864464228965342e-14 mile

QCElemental’s implementation of a Pint context includes many computational chemistry specific translations.

[9]: print(f"hartree -> kelvin: {qcel.constants.conversion_factor('hartree', 'kelvin')}")
print(f"hartree -> kilogram: {qcel.constants.conversion_factor('hartree', 'kilogram')}
→˓")

hartree -> kelvin: 315775.13
hartree -> kilogram: 4.850870129000001e-35

12 Chapter 4. Supported by

https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=920686
https://pint.readthedocs.io/en/0.9/

QCArchive Documentation, Release 1.0

4.3.3 Physical Quantities

QCElemental can provide many canonical quantities from a variety of standard names:

[10]: print(qcel.periodictable.to_mass(6))
print(qcel.periodictable.to_mass("C"))
print(qcel.periodictable.to_mass("C12"))
print(qcel.periodictable.to_mass("Carbon"))

12.0
12.0
12.0
12.0

4.3.4 Conclusion

These are some of the capabilities QCElemental offers, check out more documentation. If you like the project, consider
starring us on GitHub or if you have any questions, join our Slack channel.

You can run this notebook online in a session or view it on Github.

4.4 QCEngine

Full QCEngine documentation is available.

QCEngine is a quantum chemistry abstraction layer where many different quantum chemistry (or quantum-chemistry-
like!) programs can be run with identical input and output abstractions that match the MolSSI QCSchema.

Begin by importing qcengine.

[1]: import qcelemental as qcel
import qcengine as qcng

We can list all programs that QCEngine currently supports. It should be noted that there are many programs which
provide force field or machine learning potential evaluation (e.g. rdkit and torchani) in addition to the traditional
quantum chemistry programs.

[2]: qcng.list_all_programs()

[2]: {'dftd3',
'entos',
'molpro',
'mopac',
'mp2d',
'psi4',
'rdkit',
'terachem',
'torchani'}

We can then list all programs that QCEngine has detected on the current resource. This list will vary depending on
installed packages. As a note, QCEngine does not install programs by default, and these must be installed separately.

[3]: qcng.list_available_programs()

[3]: {'dftd3', 'mopac', 'psi4', 'rdkit'}

4.4. QCEngine 13

http://docs.qcarchive.molssi.org/projects/QCElemental
https://github.com/MolSSI/QCElemental
https://join.slack.com/t/qcdb/shared_invite/enQtNDIzNTQ2OTExODk0LWM3OTgxN2ExYTlkMTlkZjA0OTExZDlmNGRlY2M4NWJlNDlkZGQyYWUxOTJmMzc3M2VlYzZjMjgxMDRkYzFmOTE
https://github.com/MolSSI/QCArchiveInfrastructureWebsite/blob/master/basic_examples/QCEngine.ipynb
http://docs.qcarchive.molssi.org/projects/QCEngine
https://github.com/MolSSI/QCSchema

QCArchive Documentation, Release 1.0

4.4.1 Single Computations

QCEngine makes the distinction between a “single” evaluation which corresponds to a single molecular geometry
and a “procedure” which involves multiple geometries or multiple molecules. “Single” evaluations include energy,
gradient, Hessian, and property quantities. “Procedures” include geometry optimization and other complex multi-step
procedures.

First, we can build a Molecule object using the QCElemental molecule builder:

[4]: mol = qcel.models.Molecule(geometry=[[0, 0, 0], [0, 1.5, 0], [0, 0, 1.5]],
symbols=["O", "H", "H"],
connectivity=[[0, 1, 1], [0, 2, 1]])

mol

Data type cannot be displayed: application/3dmoljs_load.v0, text/html

[4]: <Molecule(name='H2O' formula='H2O' hash='b41d0c5')>

We can then provide minimal input for a quantum chemistry job which specifies the molecule, driver, and model that
the computation should be run under:

[5]: computation = {
"molecule": mol,
"driver": "energy",
"model": {"method": "B3LYP", "basis": "6-31g"}

}
ret = qcng.compute(computation, "psi4")

The result contains many attributes that hold relevant data. We can access the return_result which contains the
desired value as determined by the driver input field. In this case, it is the B3LYP/6-31g energy (in Hartree):

[6]: ret.return_result

[6]: -76.2741297206346

QCEngine automatically parses additional data about the state of the computation and pulls several other component
fields. Here we can see the energy breakdown as well as the basis information:

[7]: ret.properties.dict()

[7]: {'calcinfo_nbasis': 13,
'calcinfo_nmo': 13,
'calcinfo_nalpha': 5,
'calcinfo_nbeta': 5,
'calcinfo_natom': 3,
'nuclear_repulsion_energy': 11.138071187457696,
'return_energy': -76.2741297206346,
'scf_one_electron_energy': -126.25159666378747,
'scf_two_electron_energy': 46.556895182916136,
'scf_xc_energy': -7.717499427220989,
'scf_dipole_moment': [0.0, 0.0, 2.660795024634264],
'scf_total_energy': -76.2741297206346,
'scf_iterations': 6}

Finally, QCEngine records much of the state of the computation such as the hardware it was run on, the program it
was run with, and the versions of programs used:

14 Chapter 4. Supported by

QCArchive Documentation, Release 1.0

[8]: ret.provenance.dict()

[8]: {'creator': 'Psi4',
'version': '1.3.2',
'routine': 'psi4.json.run_json',
'memory': 2.266,
'nthreads': 2,
'qcengine_version': 'v0.9.0',
'wall_time': 2.847166061401367,
'hostname': 'Daniels-MacBook-Pro.local',
'cpu': 'Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz',
'username': 'daniel'}

4.4.2 Procedures

Since we created a pretty poor molecule to start with, we should optimize it first under a force field method to have
a reasonable geometry. Here, we will use the standalone geomeTRIC package coupled with the rdkit force field
evaluator.

[9]: oh_bond, hoh_angle = mol.measure([[0, 1], [1, 0, 2]])
print(f"O-H Bond length (Bohr): {oh_bond}")
print(f"H-O-H Angle (degrees): {hoh_angle}")

O-H Bond length (Bohr): 1.5
H-O-H Angle (degrees): 90.0

[10]: opt_input = {
"keywords": {

"program": "rdkit"
},
"input_specification": {

"driver": "gradient",
"model": {"method": "UFF"},

},
"initial_molecule": mol

}
opt = qcng.compute_procedure(opt_input, "geometric")
opt

[10]: <Optimization(model='{'method': 'UFF', 'basis': None}' molecule_hash='b41d0c5')>

We can first check the geometry of the final molecule and see that it is something much more reasonable:

[11]: opt_mol = opt.final_molecule
oh_bond, hoh_angle = opt_mol.measure([[0, 1], [1, 0, 2]])
print(f"O-H Bond length (Bohr): {oh_bond}")
print(f"H-O-H Angle (degrees): {hoh_angle}")

O-H Bond length (Bohr): 1.8713297962085038
H-O-H Angle (degrees): 104.5102429904286

We can explore additional data generated with this geometry optimization including details of every gradient evaluation
performed:

[12]: opt.trajectory

4.4. QCEngine 15

QCArchive Documentation, Release 1.0

[12]: [<Result(driver='gradient' model='{'method': 'UFF', 'basis': None}' molecule_hash=
→˓'b41d0c5')>,
<Result(driver='gradient' model='{'method': 'UFF', 'basis': None}' molecule_hash=
→˓'1ad5fe3')>,
<Result(driver='gradient' model='{'method': 'UFF', 'basis': None}' molecule_hash=
→˓'04ec4cf')>,
<Result(driver='gradient' model='{'method': 'UFF', 'basis': None}' molecule_hash=
→˓'58054eb')>,
<Result(driver='gradient' model='{'method': 'UFF', 'basis': None}' molecule_hash=
→˓'f2a154b')>,
<Result(driver='gradient' model='{'method': 'UFF', 'basis': None}' molecule_hash=
→˓'3c65f4c')>]

If desired, we can also look at the standard output of the geomeTRIC program:

[13]: print(opt.stdout)

9 internal coordinates being used (instead of 9 Cartesians)
Internal coordinate system (atoms numbered from 1):
Distance 1-2
Distance 1-3
Angle 2-1-3
Translation-X 1-3
Translation-Y 1-3
Translation-Z 1-3
Rotation-A 1-3
Rotation-B 1-3
Rotation-C 1-3
<class 'geometric.internal.Distance'> : 2
<class 'geometric.internal.Angle'> : 1
<class 'geometric.internal.TranslationX'> : 1
<class 'geometric.internal.TranslationY'> : 1
<class 'geometric.internal.TranslationZ'> : 1
<class 'geometric.internal.RotationA'> : 1
<class 'geometric.internal.RotationB'> : 1
<class 'geometric.internal.RotationC'> : 1
Step 0 : Gradient = 1.686e-01/1.827e-01 (rms/max) Energy = 0.0180063792
Hessian Eigenvalues: 5.00000e-02 5.00000e-02 5.00000e-02 ... 1.60000e-01 1.14610e+00
→˓1.14610e+00
Step 1 : Displace = 1.073e-01/1.303e-01 (rms/max) Trust = 1.000e-01 (=) Grad = 1.
→˓080e-01/1.234e-01 (rms/max) E (change) = 0.0065007416 (-1.151e-02) Quality = 0.413
Hessian Eigenvalues: 5.00000e-02 5.00000e-02 5.00000e-02 ... 1.95811e-01 4.90425e-01
→˓1.14610e+00
Step 2 : Displace = 8.518e-02/1.017e-01 (rms/max) Trust = 1.000e-01 (=) Grad = 1.
→˓592e-02/2.161e-02 (rms/max) E (change) = 0.0001690891 (-6.332e-03) Quality = 0.307
Hessian Eigenvalues: 5.00000e-02 5.00000e-02 5.00000e-02 ... 2.02540e-01 4.27767e-01
→˓1.14610e+00
Step 3 : Displace = 1.326e-02/1.817e-02 (rms/max) Trust = 1.000e-01 (=) Grad = 1.
→˓744e-03/2.373e-03 (rms/max) E (change) = 0.0000051046 (-1.640e-04) Quality = 0.317
Hessian Eigenvalues: 5.00000e-02 5.00000e-02 5.00000e-02 ... 1.68278e-01 4.49086e-01
→˓1.14610e+00
Step 4 : Displace = 4.295e-03/4.443e-03 (rms/max) Trust = 1.000e-01 (=) Grad = 1.
→˓311e-04/1.413e-04 (rms/max) E (change) = 0.0000000164 (-5.088e-06) Quality = 0.287
Hessian Eigenvalues: 5.00000e-02 5.00000e-02 5.00000e-02 ... 1.63098e-01 4.53449e-01
→˓1.14610e+00
Step 5 : Displace = 2.091e-04/2.541e-04 (rms/max) Trust = 1.000e-01 (=) Grad = 9.
→˓256e-06/1.015e-05 (rms/max) E (change) = 0.0000000001 (-1.632e-08) Quality = 0.294
Converged! =D

(continues on next page)

16 Chapter 4. Supported by

QCArchive Documentation, Release 1.0

(continued from previous page)

4.4.3 Conclusion

These are some of the capabilities QCEngine offers, check out more documentation. If you like the project, consider
starring us on GitHub or if you have any questions, join our Slack channel.

You can run this notebook online in a session or view it on Github.

4.5 QCFractal

Full QCFractal documentation is available.

This tutorial will go over general QCFractal usage to give a feel for the ecosystem. In this tutorial, we employ
Snowflake, a simple QCFractal stack which runs on a local machine for demonstration and exploration purposes.

4.5.1 Installation

To begin this quickstart tutorial, first install the QCArchive Snowflake environment from conda:

conda env create qcarchive/qcf-snowflake -n snowflake
conda activate snowflake

If you have a pre-existing environment with qcfractal, ensure that rdkit and geometric are installed from the
conda-forge channel and psi4 from the psi4 channel. It should be noted that QCFractal does not come with
any compute backend by default and they must be installed individually.

4.5.2 Importing QCFractal

First let us import two items from the ecosystem:

• FractalSnowflakeHandler - This is a FractalServer that is temporary and is used for trying out new things.

• qcfractal.interface is the QCPortal module, but if using QCFractal it is best to import it locally.

Typically we alias qcportal as ptl. We will do the same for qcfractal.interface so that the code can be
used anywhere.

[1]: from qcfractal import FractalSnowflakeHandler
import qcfractal.interface as ptl

We can now build a temporary server which acts just like a normal server, but we have a bit more direct control of it.

Warning! All data is lost when this notebook shuts down! This is for demonstration purposes only! For information
about how to setup a permanent QCFractal server, see the Setup Quickstart Guide.

[2]: server = FractalSnowflakeHandler()
server

[2]: FractalSnowflakeHandler(name='db_eca84388_570c_449a_9b72_44ac0885ea66' uri='https://
→˓localhost:55332')

4.5. QCFractal 17

http://docs.qcarchive.molssi.org/projects/QCEngine
https://github.com/MolSSI/QCEngine
https://join.slack.com/t/qcdb/shared_invite/enQtNDIzNTQ2OTExODk0LWM3OTgxN2ExYTlkMTlkZjA0OTExZDlmNGRlY2M4NWJlNDlkZGQyYWUxOTJmMzc3M2VlYzZjMjgxMDRkYzFmOTE
https://github.com/MolSSI/QCArchiveInfrastructureWebsite/blob/master/basic_examples/QCFractal.ipynb
http://docs.qcarchive.molssi.org/projects/QCFractal
http://docs.qcarchive.molssi.org/projects/qcfractal/en/latest/api/qcfractal.FractalSnowflakeHandler.html?highlight=FractalSnowflakeHandler
http://docs.qcarchive.molssi.org/projects/QCFractal/en/stable/setup_quickstart.html
https://github.com/MolSSI/QCPortal
http://docs.qcarchive.molssi.org/projects/QCFractal/en/stable/setup_quickstart.html

QCArchive Documentation, Release 1.0

We can then build a typical FractalClient to automatically connect to this server using the client() helper command.
Note that the server names and addresses are identical in both the server and client.

[3]: client = server.client()
client

[3]: FractalClient(server_name='db_eca84388_570c_449a_9b72_44ac0885ea66', address='https://
→˓localhost:55332/', username='None')

4.5.3 Adding and Querying data

A server starts with no data, so let’s add some! We can do this by adding a water molecule at a poor geometry from
XYZ coordinates. Note that all internal QCFractal values are stored and used in atomic units; whereas, the standard
Molecule.from_data() assumes an input of Angstroms. We can switch this back to Bohr by adding a units command
in the text string.

[4]: mol = ptl.Molecule.from_data("""
O 0 0 0
H 0 0 2
H 0 2 0
units bohr
""")
mol

Data type cannot be displayed: application/3dmoljs_load.v0, text/html

[4]: <Molecule(name='H2O' formula='H2O' hash='58e5adb')>

We can then measure various aspects of this molecule to determine its shape. Note that the measure command will
provide a distance, angle, or dihedral depending if 2, 3, or 4 indices are passed in.

This molecule is quite far from optimal, so let’s run an geometry optimization!

[5]: print(mol.measure([0, 1]))
print(mol.measure([1, 0, 2]))

2.0
90.0

4.5.4 Evaluating a Geometry Optimization

We originally installed psi4 and geometric, so we can use these programs to perform a geometry optimization.
In QCFractal, we call a geometry optimization a procedure, where procedure is a generic term for a higher
level operation that will run multiple individual quantum chemistry energy, gradient, or Hessian evaluations. Other
procedure examples are finite-difference computations, n-body computations, and torsiondrives.

We provide a JSON-like input to the client.add_procedure() command to specify the method, basis, and program to
be used. The qc_spec field is used in all procedures to determine the underlying quantum chemistry method behind
the individual procedure. In this way, we can use any program or method that returns a energy or gradient quantity to
run our geometry optimization! (See also add_compute().)

[6]: spec = {
"keywords": None,
"qc_spec": {

(continues on next page)

18 Chapter 4. Supported by

http://docs.qcarchive.molssi.org/projects/qcportal/en/latest/client.html?highlight=fractalclient#portal-client
http://docs.qcarchive.molssi.org/projects/qcfractal/en/latest/api/qcfractal.FractalSnowflakeHandler.html?highlight=FractalSnowflakeHandler#qcfractal.FractalSnowflakeHandler.client
http://docs.qcarchive.molssi.org/projects/qcelemental/en/latest/molecule.html?highlight=from_data#creation
http://docs.qcarchive.molssi.org/projects/qcportal/en/latest/client-api.html?highlight=add_procedure#qcportal.FractalClient.add_procedure
http://docs.qcarchive.molssi.org/projects/qcportal/en/latest/client-api.html?highlight=add_procedure#qcportal.FractalClient.add_compute

QCArchive Documentation, Release 1.0

(continued from previous page)

"driver": "gradient",
"method": "b3lyp-d3",
"basis": "6-31g",
"program": "psi4"

},
}

Ask the server to compute a new computation
r = client.add_procedure("optimization", "geometric", spec, [mol])
print(r)
print(r.ids)

ComputeResponse(nsubmitted=1 nexisting=0)
['1']

We can see that we submitted a single task to be evaluated and the server has not seen this particular procedure before.
The ids field returns the unique id of the procedure. Different procedures will always have a unique id, while
identical procedures will always return the same id. We can submit the same procedure again to see this effect:

[7]: r2 = client.add_procedure("optimization", "geometric", spec, [mol])
print(r)
print(r.ids)

ComputeResponse(nsubmitted=1 nexisting=0)
['1']

4.5.5 Querying Procedures

Once a task is submitted, it will be placed in the compute queue and evaluated. In this particular case the Fractal-
SnowflakeHandler uses your local hardware to evaluate these jobs. We recommend avoiding large tasks!

In general, the server can handle anywhere between laptop-scale resources to many hundreds of thousands of concur-
rent cores at many physical locations. The amount of resources to connect is up to you and the amount of compute
that you require.

Since we did submit a very small job it is likely complete by now. Let us query this procedure from the server using
its id like so:

[10]: proc = client.query_procedures(id=r.ids)[0]
proc

[10]: <OptimizationRecord(id='1' status='COMPLETE')>

This OptimizationRecord object has many different fields attached to it so that all quantities involved in the compu-
tation can be explored. For this example, let us pull the final molecule (optimized structure) and inspect the physical
dimensions.

Note: if the status does not say COMPLETE, these fields will not be available. Try querying the procedure again in a
few seconds to see if the task completed in the background.

[11]: final_mol = proc.get_final_molecule()

[12]: print(final_mol.measure([0, 1]))
print(final_mol.measure([1, 0, 2]))
final_mol

4.5. QCFractal 19

http://docs.qcarchive.molssi.org/projects/qcfractal/en/latest/api/qcfractal.FractalSnowflakeHandler.html?highlight=FractalSnowflakeHandler
http://docs.qcarchive.molssi.org/projects/qcfractal/en/latest/api/qcfractal.FractalSnowflakeHandler.html?highlight=FractalSnowflakeHandler
http://docs.qcarchive.molssi.org/projects/qcportal/en/latest/record-api.html?highlight=optimizationrecord#qcportal.models.OptimizationRecord

QCArchive Documentation, Release 1.0

1.8441303967690752
108.31440111097281

Data type cannot be displayed: application/3dmoljs_load.v0, text/html

[12]: <Molecule(name='H2O' formula='H2O' hash='573ea85')>

This water molecule has bond length and angle dimensions much closer to expected values. We can also plot the
optimization history to see how each step in the geometry optimization affected the results. Though the chart is not too
impressive for this simple molecule, it is hopefully illuminating and is available for any geometry optimization ever
completed.

[13]: proc.show_history()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.5.6 Collections

Submitting individual procedures or single quantum chemistry tasks is not typically done as it becomes hard to track
individual tasks. To help resolve this, Collections are different ways of organizing standard computations so
that many tasks can be referenced in a more human-friendly way. In this particular case, we will be exploring an
intermolecular potential dataset.

To begin, we will create a new dataset and add a few intermolecular interactions to it.

[14]: ds = ptl.collections.ReactionDataset("My IE Dataset", ds_type="ie", client=client,
→˓default_program="psi4")

We can construct a water dimer that has fragments used in the intermolecular computation with the -- divider. A
single water molecule with ghost atoms can be extracted like so:

[15]: water_dimer = ptl.Molecule.from_data("""
O 0.000000 0.000000 0.000000
H 0.758602 0.000000 0.504284
H 0.260455 0.000000 -0.872893
--
O 3.000000 0.500000 0.000000
H 3.758602 0.500000 0.504284
H 3.260455 0.500000 -0.872893
""")

water_dimer.get_fragment(0, 1)

Data type cannot be displayed: application/3dmoljs_load.v0, text/html

[15]: <Molecule(name='H4O2 ([0],[1])' formula='H4O2' hash='8248da9')>

Many molecular entries can be added to this dataset where each is entry is a given intermolecular complex that is given
a unique name. In addition, the add_ie_rxn method to can automatically fragment molecules.

20 Chapter 4. Supported by

QCArchive Documentation, Release 1.0

[16]: ds.add_ie_rxn("water dimer", water_dimer)
ds.add_ie_rxn("helium dimer", """
He 0 0 -3
--
He 0 0 3
""")

[16]: <ReactionRecord(ProtoModel)>

Once the Collection is created it can be saved to the server so that it can always be retrived at a future date

[17]: ds.save()

[17]: '1'

The client can list all Collections currently on the server and retrive collections to be manipulated:

[18]: client.list_collections()

[18]: tagline
collection name
ReactionDataset My IE Dataset None

[19]: ds = client.get_collection("ReactionDataset", "My IE Dataset")

4.5.7 Computing with collections

Computational methods can be applied to all of the reactions in the dataset with just a few simple lines:

[20]: ds.compute("B3LYP-D3", "def2-SVP")

[20]: <ComputeResponse(nsubmitted=10 nexisting=0)>

By default this collection evaluates the non-counterpoise corrected interaction energy which typically requires three
computations per entry (the complex and each monomer). In this case we compute the B3LYP and -D3 additive
correction separately, nominally 12 total computations. However the collection is smart enough to understand that each
Helium monomer is identical and does not need to be computed twice, reducing the total number of computations to
10 as shown here. We can continue to compute additional methods. Again, this is being evaluated on your computer!
Be careful of the compute requirements.

[21]: ds.compute("PBE-D3", "def2-SVP")

[21]: <ComputeResponse(nsubmitted=10 nexisting=0)>

A list of all methods that have been computed for this dataset can also be shown:

[22]: ds.list_history()

[22]: stoichiometry
driver program method basis keywords
energy psi4 b3lyp def2-svp None default

b3lyp-d3 def2-svp None default
pbe def2-svp None default
pbe-d3 def2-svp None default

The above only shows what has been computed and does not pull this data from the server to your computer. To do
so, the get_history command can be used. As the commands are being executed in the backend we need to wait

4.5. QCFractal 21

QCArchive Documentation, Release 1.0

a bit to get the history again when the computations are complete. The force=True flag will re-query the database
rather than using cached data.

[23]: ds.get_history(force=True)

[23]: driver program method basis keywords stoichiometry \
0 energy psi4 b3lyp def2-svp NaN default
1 energy psi4 b3lyp-d3 def2-svp NaN default
2 energy psi4 pbe def2-svp NaN default
3 energy psi4 pbe-d3 def2-svp NaN default

name
0 B3LYP/def2-svp
1 B3LYP-D3/def2-svp
2 PBE/def2-svp
3 PBE-D3/def2-svp

Underlying the Collection is a pandas DataFrame which can show all results:

[25]: print(f"DataFrame units: {ds.units}")
ds.df

DataFrame units: kcal / mol

[25]: B3LYP/def2-svp B3LYP-D3/def2-svp PBE/def2-svp PBE-D3/def2-svp
water dimer -4.751916 -5.577718 -5.115871 -5.632224
helium dimer -0.000346 -0.000848 -0.000387 -0.000864

You can also visualize results and more!

[26]: ds.visualize(["B3LYP-D3", "PBE-D3"], "def2-SVP", bench="B3LYP/def2-svp", kind="violin
→˓")

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.5.8 Conclusion

These are just some of the capabilities QCFractal offers, check out more documentation. If you like the project,
consider starring us on GitHub or if you have any questions, join our Slack channel.

You can run this notebook online in a session or view it on Github.

4.6 QCPortal

Full QCPortal documentation is available.

QCPortal is a data viewer for a QCFractal server. QCPortal can be used with any QCFractal server including one that
you build on your own, but for these examples we will use the MolSSI QCArchive server. To begin we first construct
a client that points to a QCFractal server instance, here we explicitly add the molssi.org server.

[1]: import qcportal as ptl
client = ptl.FractalClient("api.qcarchive.molssi.org")
client

22 Chapter 4. Supported by

http://docs.qcarchive.molssi.org/projects/QCFractal
https://github.com/MolSSI/QCFractal
https://join.slack.com/t/qcdb/shared_invite/enQtNDIzNTQ2OTExODk0LWM3OTgxN2ExYTlkMTlkZjA0OTExZDlmNGRlY2M4NWJlNDlkZGQyYWUxOTJmMzc3M2VlYzZjMjgxMDRkYzFmOTE
https://github.com/MolSSI/QCArchiveInfrastructureWebsite/blob/master/basic_examples/QCPortal.ipynb
http://docs.qcarchive.molssi.org/projects/QCPortal

QCArchive Documentation, Release 1.0

[1]: FractalClient(server_name='The MolSSI QCArchive Server', address='https://api.
→˓qcarchive.molssi.org/', username='None')

4.6.1 Finding Collections

One of the main ways to explore the QCArchive is to examine Collections which are structures that allow easy
manipulation of data in preset ways. Several example of Collections contained within the QCArchive are as
follows:

• Dataset - A dataset where each record is a single molecule and many methods can be applied to each record.

• ReactionDataset - A dataset where each record is a combinations of molecule (e.g. interaction and reaction
energies) and many methods can be applied to each record.

• OpenFFWorkflow - A workflow collection for torsiondrives and contstrained optimization developed with
the Open Force Field Iniative.

• TorsionDriveDataset - A datas set which organizes many molecular torsion scans together for data ex-
ploration, analysis, and methodology comparison (see the TorsionDrive Dataset example for more details).

[2]: client.list_collections().head()

[2]: tagline
collection name
Dataset OpenFF Discrepancy Benchmark 1 None

OpenFF NCI250K Boron 1 None
OpenFF Optimization Set 1 None
OpenFF VEHICLe Set 1 None
SMIRNOFF Coverage Set 1 None

Specific Collection types can be queried to limit the amount of collections to browse through:

[4]: client.list_collections("ReactionDataset").head()

[4]: tagline
collection name
ReactionDataset A21 Equilibrium complexes from A24 database of sma...

A24 Interaction energies for small bimolecular com...
ACONF Conformation energies for alkanes
AlkBind12 Binding energies of saturated and unsaturated ...
AlkIsod14 Isodesmic reaction energies for alkanes N=3--8

4.6.2 Exploring Collections

Collections can be obtained by pulling their data from the centeral server. A collection is primarily metadata and
extremely large collections can be pulled in a few seconds. For this example we will explore S22 dataset which is a
small interaction energy dataset of 22 common dimers such as the water dimer, methane dimer, and more. To obtain
this collection:

[5]: ds = client.get_collection("ReactionDataset", "S22")
print(ds)

ReactionDataset(name=`S22`, id='1', client='https://api.qcarchive.molssi.org/')

4.6. QCPortal 23

https://openforcefield.org

QCArchive Documentation, Release 1.0

4.6.3 Stastistics and Visualization

Visual statics and plotting can be generated by the visualize command:

[6]: ds.visualize(method="B2PLYP", basis=["def2-svp", "def2-tzvp"], bench="S220", kind=
→˓"violin")

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.6.4 Conclusion

These are just some of the capabilities QCPortal offers; check out more examples and the QCPortal documentation. If
you like the project, consider starring us on GitHub or if you have any questions, join our Slack channel.

24 Chapter 4. Supported by

https://qcarchive.molssi.org/examples/
http://docs.qcarchive.molssi.org/projects/QCPortal
https://github.com/MolSSI/QCFractal
https://join.slack.com/t/qcdb/shared_invite/enQtNDIzNTQ2OTExODk0LWM3OTgxN2ExYTlkMTlkZjA0OTExZDlmNGRlY2M4NWJlNDlkZGQyYWUxOTJmMzc3M2VlYzZjMjgxMDRkYzFmOTE

	Layered Infrastructure
	Project Highlights
	Project Demos
	Supported by

