

QCPortal

QCPortal is a front-end to a QCFractal server which allows the querying,
visualization, manipulation of hosted data.

QCPortal emphasizes the following virtues:

	Organize: Large sets of computations are organized into Collections for easy reference and manipulation.

	Reproducibility: All steps of commonly used pipelines are elucidated in the input without additional human intervention.

	Exploration: Explore and query of all data contained within a FractalServer.

	Visualize: Plot graphs within Jupyter notebooks or provide 3D graphics of molecules.

	Accessibility: Easily share quantum chemistry data with colleagues or the community through accessibility settings.

Collections

Collections are objects that can reference tens or millions of individual
computations and provide handles to access and visualize this data.
All collections support the possibility of computing with and comparing multiple methods.
There are many types of collections such as:

	Dataset - A collection for a set of molecules and their computed properties.

	Reaction Dataset - A collection for chemical reactions and intermolecular interactions.

	Optimization Dataset - A collection for geometry optimization of a set of molecules.

	TorsionDrive Dataset - A collection for the TorsionDrive pipeline.

There are many types of collections and more are being added to index and
organize computations for every use case.

Visualization

Advanced visualization routines based off Plotly is provided out of the box to
allow interactive statistics and rich visual information. In addition, popular
molecular visualization tools like 3dMol.js provide interactive molecules
within the Jupyter notebook ecosystem.

Index

Getting Started

	Install QCPortal

Collections

Collections are the primary way of viewing and generating new data.

	Overview

	Dataset

	Reaction Dataset

	Optimization Dataset

	TorsionDrive Dataset

	Common Tasks

Records

Documentation for compute records.

	Overview

	Results

	Optimization

	API

Fractal Client

A Client is the primary user interface to a Fractal server instance.

	Portal Client

	Add/Query Objects

	Records Querying

	New Compute Tasks

	API

Developer Documentation

Contains in-depth developer documentation.

Install QCPortal

You can install qcportal with conda or with pip.

Conda

You can install qcportal using conda [https://www.anaconda.com/download/]:

>>> conda install qcportal -c conda-forge

This installs QCPortal and its dependencies. The qcportal package is maintained on the
conda-forge channel [https://conda-forge.github.io/].

Pip

you can also install QCPortal using pip:

>>> pip install qcportal

Test the Installation

You can test to make sure that QCPortal is installed correctly by first installing pytest.

From conda:

>>> conda install pytest -c conda-forge

From pip:

>>> pip install pytest

Then, run the following command:

>>> pytest --pyargs qcportal

Developing from Source

The QCPortal package is part of the QCFractal package and is the qcfractal.interface folder. If you are a developer
and want to make contributions Portal, you can access the source code from
github [https://github.com/molssi/qcfractal] and the aforementioned folder.

Overview

Collections are an organizational objects that keep track of collections of
results, compute new results, and provide helper functions for analysis and visualization.

Collections querying

Once a FractalClient has been created, the client can query a list of all
collections currently held on the server.

>>> client.list_collections()
{"ReactionDataset": ["S22"]}

A collection can then be pulled from the server as follows:

>>> client.get_collection("ReactionDataset", "S22")
Dataset(id=`5b7f1fd57b87872d2c5d0a6d`, name=`S22`, client="localhost:7777")

Available collections

Below is a complete list of collection types available from QCPortal.
All collections support the possibility of computing with and comparing multiple methods.

	Dataset - A collection for a set of molecules and their computed properties.

	Reaction Dataset - A collection for chemical reactions and intermolecular interactions.

	Optimization Dataset - A collection for geometry optimization of a set of molecules.

	TorsionDrive Dataset - A collection for the TorsionDrive pipeline.

Dataset

The Dataset collection represents a table whose rows correspond to
Molecules, and whose columns correspond to properties.
Columns may either result from QCFractal-based calculations or be contributed from outside sources.
For example, the QM9 dataset on QCArchive contains small organic molecules with up to 9 heavy atoms, and includes
the original reported PBE0 energies, as well as energies calculated with a variety of other density functionals and basis sets.

Existing Datasets can be listed with
FractalClient.list_collections("Dataset")
and obtained with FractalClient.get_collection("Dataset", name).

Querying

Available result specifications (method, basis set, program, keyword, driver combinations) in a
Dataset may be listed with the list_values
method. Values are queried with the get_values method. For results computed
using QCFractal, the underlying Records
are retrieved with get_records.

For examples of querying Datasets,
see the QCArchive examples [https://qcarchivetutorials.readthedocs.io/en/latest/basic_examples/getting_started.html].

Statistics and Visualization

Statistics on Datasets may be computed using the
statistics command,
and plotted using the visualize command.

For examples of visualizing Datasets,
see the QCArchive examples [https://qcarchivetutorials.readthedocs.io/en/latest/basic_examples/getting_started.html].

Creating

Construct an empty Dataset:

import qcportal as ptl
client = plt.FractalClient() # add server and login information as needed
ds = ptl.collections.Dataset("name", client=client)

The primary index of a Dataset is a list of Molecules.
Molecules can be added to a Dataset with
add_entry:

ds.add_entry(name, molecule)

Once all Molecules have been added, commit the changes on the server with save.
Note that this requires write permissions [http://docs.qcarchive.molssi.org/projects/qcfractal/en/stable/server_user.html#user-permissions].

ds.save()

Computing

Methods can be computed to the Dataset and computed using the
compute command.
This command causes a calculation to be requested for every molecule in the Dataset.
Any calculations that have previously been done will be automatically added without recomputation.
Note that this requires compute permissions [http://docs.qcarchive.molssi.org/projects/qcfractal/en/stable/server_user.html#user-permissions].

models = {('b3lyp', 'def2-svp'), ('mp2', 'cc-pVDZ')}

for method, basis in models:
 print(method, basis)
 spec = {"program": "psi4",
 "method": method,
 "basis": basis,
 "keywords": "my_keywords",
 "tag": "mgwtfm"}
 ds.compute(**spec)

Note

You can set a default program and keyword set for a Dataset.
These defaults will be used in compute,
get_values, and
get_records.

ds.set_default_program("psi4")

keywords = ptl.models.KeywordSet(values={'maxiter': 1000,
 'e_convergence': 8,
 'guess': 'sad',
 'scf_type': 'df'})
ds.add_keywords("my_keywords", "psi4", keywords, default=True)

ds.save()

API

	
class qcportal.collections.Dataset(name: str, client: Optional[FractalClient] = None, **kwargs: Any)

	The Dataset class for homogeneous computations on many molecules.

	Variables

	
	client (client.FractalClient) – A FractalClient connected to a server

	data (dict) – JSON representation of the database backbone

	df (pd.DataFrame) – The underlying dataframe for the Dataset object

	
class DataModel

	
	Parameters

	
	id (str, Default: local)

	name (str)

	collection (str)

	provenance (name=’provenance’ type=Mapping[str, str] required=False default={}, Default: {})

	tags (List[str], Default: [])

	tagline (str, Optional)

	description (str, Optional)

	group (str, Default: default)

	visibility (bool, Default: True)

	view_url_hdf5 (str, Optional)

	view_url_plaintext (str, Optional)

	view_metadata (name=’view_metadata’ type=Optional[Mapping[str, str]] required=False default=None, Optional)

	view_available (bool, Default: False)

	metadata (Dict[str, Any], Default: {})

	default_program (str, Optional)

	default_keywords (name=’default_keywords’ type=Mapping[str, str] required=False default={}, Default: {})

	default_driver (str, Default: energy)

	default_units (str, Default: kcal / mol)

	default_benchmark (str, Optional)

	alias_keywords (Dict[str, Dict[str, str]], Default: {})

	records (MoleculeEntry, Optional)

	contributed_values (ContributedValues, Optional)

	history (Set[Tuple[str, str, str, str, str]], Default: set())

	history_keys (Tuple[str, str, str, str, str], Default: (‘driver’, ‘program’, ‘method’, ‘basis’, ‘keywords’))

	
add_contributed_values(contrib: qcportal.collections.dataset.ContributedValues, overwrite: bool = False) → None

	Adds a ContributedValues to the database. Be sure to call save() to commit changes to the server.

	Parameters

	
	contrib (ContributedValues) – The ContributedValues to add.

	overwrite (bool, optional) – Overwrites pre-existing values

	
add_entry(name: str, molecule: Molecule, **kwargs: Dict[str, Any]) → None

	Adds a new entry to the Dataset

	Parameters

	
	name (str) – The name of the record

	molecule (Molecule) – The Molecule associated with this record

	**kwargs (Dict[str, Any]) – Additional arguments to pass to the record

	
add_keywords(alias: str, program: str, keyword: KeywordSet, default: bool = False) → bool

	Adds an option alias to the dataset. Not that keywords are not present
until a save call has been completed.

	Parameters

	
	alias (str) – The alias of the option

	program (str) – The compute program the alias is for

	keyword (KeywordSet) – The Keywords object to use.

	default (bool, optional) – Sets this option as the default for the program

	
compute(method: str, basis: Optional[str] = None, *, keywords: Optional[str] = None, program: Optional[str] = None, tag: Optional[str] = None, priority: Optional[str] = None) → qcportal.models.rest_models.ComputeResponse

	Executes a computational method for all reactions in the Dataset.
Previously completed computations are not repeated.

	Parameters

	
	method (str) – The computational method to compute (B3LYP)

	basis (Optional[str], optional) – The computational basis to compute (6-31G)

	keywords (Optional[str], optional) – The keyword alias for the requested compute

	program (Optional[str], optional) – The underlying QC program

	tag (Optional[str], optional) – The queue tag to use when submitting compute requests.

	priority (Optional[str], optional) – The priority of the jobs low, medium, or high.

	Returns

	
	An object that contains the submitted ObjectIds of the new compute. This object has the following fields:
	
	ids: The ObjectId’s of the task in the order of input molecules

	submitted: A list of ObjectId’s that were submitted to the compute queue

	existing: A list of ObjectId’s of tasks already in the database

	Return type

	ComputeResponse

	
download(local_path: Union[str, pathlib.Path, None] = None, verify: bool = True, progress_bar: bool = True) → None

	Download a remote view if available. The dataset will use this view to avoid server queries for calls to:
- get_entries
- get_molecules
- get_values
- list_values

	Parameters

	
	local_path (Optional[Union[str, Path]], optional) – Local path the store downloaded view. If None, the view will be stored in a temporary file and deleted on exit.

	verify (bool, optional) – Verify download checksum. Default: True.

	progress_bar (bool, optional) – Display a download progress bar. Default: True

	
get_entries(subset: Optional[List[str]] = None, force: bool = False) → pandas.core.frame.DataFrame

	Provides a list of entries for the dataset

	Parameters

	
	subset (Optional[List[str]], optional) – The indices of the desired subset. Return all indices if subset is None.

	force (bool, optional) – skip cache

	Returns

	A dataframe containing entry names and specifciations.
For Dataset, specifications are molecule ids.
For ReactionDataset, specifications describe reaction stoichiometry.

	Return type

	pd.DataFrame

	
get_index(subset: Optional[List[str]] = None, force: bool = False) → List[str]

	Returns the current index of the database.

	Returns

	ret – The names of all reactions in the database

	Return type

	List[str]

	
get_keywords(alias: str, program: str, return_id: bool = False) → Union[KeywordSet, str]

	Pulls the keywords alias from the server for inspection.

	Parameters

	
	alias (str) – The keywords alias.

	program (str) – The program the keywords correspond to.

	return_id (bool, optional) – If True, returns the id rather than the KeywordSet object.
Description

	Returns

	The requested KeywordSet or KeywordSet id.

	Return type

	Union[‘KeywordSet’, str]

	
get_molecules(subset: Union[str, Set[str], None] = None, force: bool = False) → Union[pandas.core.frame.DataFrame, Molecule]

	Queries full Molecules from the database.

	Parameters

	
	subset (Optional[Union[str, Set[str]]], optional) – The index subset to query on

	force (bool, optional) – Force pull of molecules from server

	Returns

	Either a DataFrame of indexed Molecules or a single Molecule if a single subset string was provided.

	Return type

	Union[pd.DataFrame, ‘Molecule’]

	
get_records(method: str, basis: Optional[str] = None, *, keywords: Optional[str] = None, program: Optional[str] = None, include: Optional[List[str]] = None, subset: Union[str, Set[str], None] = None, merge: bool = False) → Union[pandas.core.frame.DataFrame, ResultRecord]

	Queries full ResultRecord objects from the database.

	Parameters

	
	method (str) – The computational method to query on (B3LYP)

	basis (Optional[str], optional) – The computational basis query on (6-31G)

	keywords (Optional[str], optional) – The option token desired

	program (Optional[str], optional) – The program to query on

	include (Optional[List[str]], optional) – The attributes to return. Otherwise returns ResultRecord objects.

	subset (Optional[Union[str, Set[str]]], optional) – The index subset to query on

	merge (bool) – Merge multiple results into one (as in the case of DFT-D3).
This only works when include=[‘return_results’], as in get_values.

	Returns

	Either a DataFrame of indexed ResultRecords or a single ResultRecord if a single subset string was provided.

	Return type

	Union[pd.DataFrame, ‘ResultRecord’]

	
get_values(method: Union[List[str], str, None] = None, basis: Union[List[str], str, None] = None, keywords: Optional[str] = None, program: Optional[str] = None, driver: Optional[str] = None, name: Union[List[str], str, None] = None, native: Optional[bool] = None, subset: Union[List[str], str, None] = None, force: bool = False) → pandas.core.frame.DataFrame

	Obtains values matching the search parameters provided for the expected return_result values.
Defaults to the standard programs and keywords if not provided.

Note that unlike get_records, get_values will automatically expand searches and return multiple method
and basis combinations simultaneously.

None is a wildcard selector. To search for None, use “None”.

	Parameters

	
	method (Optional[Union[str, List[str]]], optional) – The computational method (B3LYP)

	basis (Optional[Union[str, List[str]]], optional) – The computational basis (6-31G)

	keywords (Optional[str], optional) – The keyword alias

	program (Optional[str], optional) – The underlying QC program

	driver (Optional[str], optional) – The type of calculation (e.g. energy, gradient, hessian, dipole…)

	name (Optional[Union[str, List[str]]], optional) – Canonical name of the record. Overrides the above selectors.

	native (Optional[bool], optional) – True: only include data computed with QCFractal
False: only include data contributed from outside sources
None: include both

	subset (Optional[List[str]], optional) – The indices of the desired subset. Return all indices if subset is None.

	force (bool, optional) – Data is typically cached, forces a new query if True

	Returns

	A DataFrame of values with columns corresponding to methods and rows corresponding to molecule entries.

	Return type

	DataFrame

	
list_records(dftd3: bool = False, pretty: bool = True, **search: Union[List[str], str, None]) → pandas.core.frame.DataFrame

	Lists specifications of available records, i.e. method, program, basis set, keyword set, driver combinations
None is a wildcard selector. To search for None, use “None”.

	Parameters

	
	pretty (bool) – Replace NaN with “None” in returned DataFrame

	**search (Dict[str, Optional[str]]) – Allows searching to narrow down return.

	Returns

	Record specifications matching **search.

	Return type

	DataFrame

	
list_values(method: Union[List[str], str, None] = None, basis: Union[List[str], str, None] = None, keywords: Optional[str] = None, program: Optional[str] = None, driver: Optional[str] = None, name: Union[List[str], str, None] = None, native: Optional[bool] = None, force: bool = False) → pandas.core.frame.DataFrame

	Lists available data that may be queried with get_values.
Results may be narrowed by providing search keys.
None is a wildcard selector. To search for None, use “None”.

	Parameters

	
	method (Optional[Union[str, List[str]]], optional) – The computational method (B3LYP)

	basis (Optional[Union[str, List[str]]], optional) – The computational basis (6-31G)

	keywords (Optional[str], optional) – The keyword alias

	program (Optional[str], optional) – The underlying QC program

	driver (Optional[str], optional) – The type of calculation (e.g. energy, gradient, hessian, dipole…)

	name (Optional[Union[str, List[str]]], optional) – The canonical name of the data column

	native (Optional[bool], optional) – True: only include data computed with QCFractal
False: only include data contributed from outside sources
None: include both

	force (bool, optional) – Data is typically cached, forces a new query if True

	Returns

	A DataFrame of the matching data specifications

	Return type

	DataFrame

	
set_default_benchmark(benchmark: str) → bool

	Sets the default benchmark value.

	Parameters

	benchmark (str) – The benchmark to default to.

	
set_default_program(program: str) → bool

	Sets the default program.

	Parameters

	program (str) – The program to default to.

	
set_view(path: Union[str, pathlib.Path]) → None

	Set a dataset to use a local view.

	Parameters

	path (Union[str, Path]) – path to an hdf5 file representing a view for this dataset

	
statistics(stype: str, value: str, bench: Optional[str] = None, **kwargs: Dict[str, Any]) → Union[numpy.ndarray, pandas.core.series.Series, numpy.float64]

	Provides statistics for various columns in the underlying dataframe.

	Parameters

	
	stype (str) – The type of statistic in question

	value (str) – The method string to compare

	bench (str, optional) – The benchmark method for the comparison, defaults to default_benchmark.

	kwargs (Dict[str, Any]) – Additional kwargs to pass to the statistics functions

	Returns

	Returns an ndarray, Series, or float with the requested statistics depending on input.

	Return type

	np.ndarray, pd.Series, float

	
to_file(path: Union[str, pathlib.Path], encoding: str) → None

	Writes a view of the dataset to a file

	Parameters

	
	path (Union[str, Path]) – Where to write the file

	encoding (str) – Options: plaintext, hdf5

	
visualize(method: Optional[str] = None, basis: Optional[str] = None, keywords: Optional[str] = None, program: Optional[str] = None, groupby: Optional[str] = None, metric: str = 'UE', bench: Optional[str] = None, kind: str = 'bar', return_figure: Optional[bool] = None) → plotly.Figure

	
	Parameters

	
	method (Optional[str], optional) – Methods to query

	basis (Optional[str], optional) – Bases to query

	keywords (Optional[str], optional) – Keyword aliases to query

	program (Optional[str], optional) – Programs aliases to query

	groupby (Optional[str], optional) – Groups the plot by this index.

	metric (str, optional) – The metric to use either UE (unsigned error) or URE (unsigned relative error)

	bench (Optional[str], optional) – The benchmark level of theory to use

	kind (str, optional) – The kind of chart to produce, either ‘bar’ or ‘violin’

	return_figure (Optional[bool], optional) – If True, return the raw plotly figure. If False, returns a hosted iPlot.
If None, return a iPlot display in Jupyter notebook and a raw plotly figure in all other circumstances.

	Returns

	The requested figure.

	Return type

	plotly.Figure

Reaction Dataset

ReactionDatasets are useful for computing many methods for a set of reactions.
There are currently two types of ReactionDatasets:

	rxn for datasets based on canonical chemical reactions \(A + B \rightarrow C\)

	ie for interaction energy datasets \(M_{complex} \rightarrow M_{monomer_1} + M_{monomer_2}\)

Querying

Available result specifications (method, basis set, program, keyword, driver combinations) in a
ReactionDataset may be listed with
list_values.
Beyond those specifications in Datasets,
ReactionDatasets provide a stoich field which may be used to
select different strategies for computation of interaction and reaction energies. By default, the counterpoise-corrected
("cp") and uncorrected ("default") values are available.

Reaction values, such as interaction or reaction energies,
are queried with get_values.
For results computed using QCFractal, the underlying Records
are retrieved with get_records, and are broken down by
Molecule within the reaction.

For examples of querying ReactionDatasets,
see the QCArchive examples [https://qcarchivetutorials.readthedocs.io/en/latest/basic_examples/reaction_datasets.html].

Visualizing

Statistics on ReactionDatasets may be computed using the
statistics command,
and plotted using the visualize command.

For examples of visualizing ReactionDatasets,
see the QCArchive examples [https://qcarchivetutorials.readthedocs.io/en/latest/basic_examples/reaction_datasets.html].

Creating

An empty dataset can be constructed by choosing a dataset name and a dataset type (dtype).

ds = ptl.collections.Dataset("my_dataset", dtype="rxn")

New reactions can be added by providing the linear combination of Molecules
required to compute the desired quantity. When the ReactionDataset is queried these
linear combinations are automatically combined for the caller.

ds = ptl.collections.Dataset("Atomization Energies", dtype="ie")

N2 = ptl.Molecule.from_data("""
N 0.0 0.0 1.0975
N 0.0 0.0 0.0
unit angstrom
""")

N_atom = ptl.Molecule.from_data("""
0 2
N 0.0 0.0 0.0
""")

ds.add_rxn("Nitrogen Molecule", [(N2, 1.0), (N_atom, -2.0)])

A given reaction can be examined by using the get_rxn function.
We store the molecule_hash followed by the reaction coefficient.

json.dumps(ds.get_rxn("Nitrogen Molecule"), indent=2)
{
 "name": "Nitrogen Molecule",
 "stoichiometry": {
 "default": {
 "1": 1.0,
 "2": -2.0
 }
 },
 "attributes": {},
 "reaction_results": {
 "default": {}
 }
}

Datasets of dtype ie can automatically construct counterpoise-correct
(cp) and non-counterpoise-correct (default) n-body expansions. The
the number after the stoichiometry corresponds to the number of bodies involved in the
computation.

ie_ds = ptl.collections.ReactionDataset("my_dataset", dtype="rxn")

water_dimer_stretch = ptl.data.get_molecule("water_dimer_minima.psimol")
ie_ds.add_ie_rxn("water dimer minima", water_dimer_stretch)

json.dumps(ie_ds.get_rxn("water dimer minima"), indent=2)

{
 "name": "water dimer minima",
 "stoichiometry": {
 "default1": { # Monomers
 "3": 1.0,
 "4": 1.0
 },
 "cp1": { # Monomers
 "5": 1.0,
 "6": 1.0
 },
 "default": { # Complex
 "7": 1.0
 },
 "cp": { # Complex
 "7": 1.0
 }
 },
 "attributes": {},
 "reaction_results": {
 "default": {}
 }
}

Computing

Computations are performed in the same manner as for a Dataset.
See the Dataset Documentation for more information.

API

	
class qcportal.collections.ReactionDataset(name: str, client: Optional[FractalClient] = None, ds_type: str = 'rxn', **kwargs)

	The ReactionDataset class for homogeneous computations on many reactions.

	Variables

	
	client (client.FractalClient) – A FractalClient connected to a server

	data (ReactionDataset.DataModel) – A Model representation of the database backbone

	df (pd.DataFrame) – The underlying dataframe for the Dataset object

	rxn_index (pd.Index) – The unrolled reaction index for all reactions in the Dataset

	
class DataModel

	
	Parameters

	
	id (str, Default: local)

	name (str)

	collection (str)

	provenance (name=’provenance’ type=Mapping[str, str] required=False default={}, Default: {})

	tags (List[str], Default: [])

	tagline (str, Optional)

	description (str, Optional)

	group (str, Default: default)

	visibility (bool, Default: True)

	view_url_hdf5 (str, Optional)

	view_url_plaintext (str, Optional)

	view_metadata (name=’view_metadata’ type=Optional[Mapping[str, str]] required=False default=None, Optional)

	view_available (bool, Default: False)

	metadata (Dict[str, Any], Default: {})

	default_program (str, Optional)

	default_keywords (name=’default_keywords’ type=Mapping[str, str] required=False default={}, Default: {})

	default_driver (str, Default: energy)

	default_units (str, Default: kcal / mol)

	default_benchmark (str, Optional)

	alias_keywords (Dict[str, Dict[str, str]], Default: {})

	records (ReactionEntry, Optional)

	contributed_values (ContributedValues, Optional)

	history (Set[Tuple[str, str, str, str, str, str]], Default: set())

	history_keys (Tuple[str, str, str, str, str, str], Default: (‘driver’, ‘program’, ‘method’, ‘basis’, ‘keywords’, ‘stoichiometry’))

	ds_type ({rxn,ie}, Default: rxn)

	
compare(other: Union[ProtoModel, pydantic.main.BaseModel], **kwargs) → bool

	Compares the current object to the provided object recursively.

	Parameters

	
	other (Model) – The model to compare to.

	**kwargs – Additional kwargs to pass to qcelemental.compare_recursive.

	Returns

	True if the objects match.

	Return type

	bool

	
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

	Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.

	
copy

	Duplicate a model, optionally choose which fields to include, exclude and change.

	Parameters

	
	include – fields to include in new model

	exclude – fields to exclude from new model, as with values this takes precedence over include

	update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data

	deep – set to True to make a deep copy of the model

	Returns

	new model instance

	
dict(**kwargs) → Dict[str, Any]

	Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

	
json(**kwargs)

	Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

	
classmethod parse_file(path: Union[str, pathlib.Path], *, encoding: str = None) → qcelemental.models.basemodels.ProtoModel

	Parses a file into a Model object.

	Parameters

	
	path (Union[str, Path]) – The path to the file.

	encoding (str, optional) – The type of the files, available types are: {‘json’, ‘msgpack’, ‘pickle’}. Attempts to
automatically infer the file type from the file extension if None.

	Returns

	The requested model from a serialized format.

	Return type

	Model

	
classmethod parse_raw(data: Union[bytes, str], *, encoding: str = None) → qcelemental.models.basemodels.ProtoModel

	Parses raw string or bytes into a Model object.

	Parameters

	
	data (Union[bytes, str]) – A serialized data blob to be deserialized into a Model.

	encoding (str, optional) – The type of the serialized array, available types are: {‘json’, ‘json-ext’, ‘msgpack-ext’, ‘pickle’}

	Returns

	The requested model from a serialized format.

	Return type

	Model

	
serialize(encoding: str, *, include: Optional[Set[str]] = None, exclude: Optional[Set[str]] = None, exclude_unset: Optional[bool] = None) → Union[bytes, str]

	Generates a serialized representation of the model

	Parameters

	
	encoding (str) – The serialization type, available types are: {‘json’, ‘json-ext’, ‘msgpack-ext’}

	include (Optional[Set[str]], optional) – Fields to be included in the serialization.

	exclude (Optional[Set[str]], optional) – Fields to be excluded in the serialization.

	exclude_unset (Optional[bool], optional) – If True, skips fields that have default values provided.

	Returns

	The serialized model.

	Return type

	Union[bytes, str]

	
classmethod update_forward_refs(**localns: Any) → None

	Try to update ForwardRefs on fields based on this Model, globalns and localns.

	
add_contributed_values(contrib: qcportal.collections.dataset.ContributedValues, overwrite: bool = False) → None

	Adds a ContributedValues to the database. Be sure to call save() to commit changes to the server.

	Parameters

	
	contrib (ContributedValues) – The ContributedValues to add.

	overwrite (bool, optional) – Overwrites pre-existing values

	
add_entry(name: str, molecule: Molecule, **kwargs: Dict[str, Any]) → None

	Adds a new entry to the Dataset

	Parameters

	
	name (str) – The name of the record

	molecule (Molecule) – The Molecule associated with this record

	**kwargs (Dict[str, Any]) – Additional arguments to pass to the record

	
add_ie_rxn(name: str, mol: qcelemental.models.molecule.Molecule, **kwargs) → qcportal.collections.reaction_dataset.ReactionEntry

	Add a interaction energy reaction entry to the database. Automatically
builds CP and no-CP reactions for the fragmented molecule.

	Parameters

	
	name (str) – The name of the reaction

	mol (Molecule) – A molecule with multiple fragments

	**kwargs – Additional kwargs to pass into build_id_fragments.

	Returns

	A representation of the new reaction.

	Return type

	ReactionEntry

	
add_keywords(alias: str, program: str, keyword: KeywordSet, default: bool = False) → bool

	Adds an option alias to the dataset. Not that keywords are not present
until a save call has been completed.

	Parameters

	
	alias (str) – The alias of the option

	program (str) – The compute program the alias is for

	keyword (KeywordSet) – The Keywords object to use.

	default (bool, optional) – Sets this option as the default for the program

	
add_rxn(name: str, stoichiometry: Dict[str, List[Tuple[qcelemental.models.molecule.Molecule, float]]], reaction_results: Optional[Dict[str, str]] = None, attributes: Optional[Dict[str, Union[int, float, str]]] = None, other_fields: Optional[Dict[str, Any]] = None) → qcportal.collections.reaction_dataset.ReactionEntry

	Adds a reaction to a database object.

	Parameters

	
	name (str) – Name of the reaction.

	stoichiometry (list or dict) – Either a list or dictionary of lists

	reaction_results (dict or None, Optional, Default: None) – A dictionary of the computed total interaction energy results

	attributes (dict or None, Optional, Default: None) – A dictionary of attributes to assign to the reaction

	other_fields (dict or None, Optional, Default: None) – A dictionary of additional user defined fields to add to the reaction entry

	Returns

	A complete specification of the reaction

	Return type

	ReactionEntry

	
static build_ie_fragments(mol: qcelemental.models.molecule.Molecule, **kwargs) → Dict[str, List[Tuple[qcelemental.models.molecule.Molecule, float]]]

	Build the stoichiometry for an Interaction Energy.

	Parameters

	
	mol (Molecule class or str) – Molecule to fragment.

	do_default (bool) – Create the default (noCP) stoichiometry.

	do_cp (bool) – Create the counterpoise (CP) corrected stoichiometry.

	do_vmfc (bool) – Create the Valiron-Mayer Function Counterpoise (VMFC) corrected stoichiometry.

	max_nbody (int) – The maximum fragment level built, if zero defaults to the maximum number of fragments.

Notes

	Returns

	ret – A JSON representation of the fragmented molecule.

	Return type

	dict

	
compute(method: str, basis: Optional[str] = None, *, keywords: Optional[str] = None, program: Optional[str] = None, stoich: str = 'default', ignore_ds_type: bool = False, tag: Optional[str] = None, priority: Optional[str] = None) → ComputeResponse

	Executes a computational method for all reactions in the Dataset.
Previously completed computations are not repeated.

	Parameters

	
	method (str) – The computational method to compute (B3LYP)

	basis (Optional[str], optional) – The computational basis to compute (6-31G)

	keywords (Optional[str], optional) – The keyword alias for the requested compute

	program (Optional[str], optional) – The underlying QC program

	stoich (str, optional) – The stoichiometry of the requested compute (cp/nocp/etc)

	ignore_ds_type (bool, optional) – Optionally only compute the “default” geometry

	tag (Optional[str], optional) – The queue tag to use when submitting compute requests.

	priority (Optional[str], optional) – The priority of the jobs low, medium, or high.

	Returns

	
	An object that contains the submitted ObjectIds of the new compute. This object has the following fields:
	
	ids: The ObjectId’s of the task in the order of input molecules

	submitted: A list of ObjectId’s that were submitted to the compute queue

	existing: A list of ObjectId’s of tasks already in the database

	Return type

	ComputeResponse

	
download(local_path: Union[str, pathlib.Path, None] = None, verify: bool = True, progress_bar: bool = True) → None

	Download a remote view if available. The dataset will use this view to avoid server queries for calls to:
- get_entries
- get_molecules
- get_values
- list_values

	Parameters

	
	local_path (Optional[Union[str, Path]], optional) – Local path the store downloaded view. If None, the view will be stored in a temporary file and deleted on exit.

	verify (bool, optional) – Verify download checksum. Default: True.

	progress_bar (bool, optional) – Display a download progress bar. Default: True

	
classmethod from_json(data: Dict[str, Any], client: FractalClient = None) → Collection

	Creates a new class from a JSON blob

	Parameters

	
	data (Dict[str, Any]) – The JSON blob to create a new class from.

	client (FractalClient, optional) – A FractalClient connected to a server

	Returns

	A constructed collection.

	Return type

	Collection

	
classmethod from_server(client: FractalClient, name: str) → Collection

	Creates a new class from a server

	Parameters

	
	client (FractalClient) – A FractalClient connected to a server

	name (str) – The name of the collection to pull from.

	Returns

	A constructed collection.

	Return type

	Collection

	
get_entries(subset: Optional[List[str]] = None, force: bool = False) → pandas.core.frame.DataFrame

	Provides a list of entries for the dataset

	Parameters

	
	subset (Optional[List[str]], optional) – The indices of the desired subset. Return all indices if subset is None.

	force (bool, optional) – skip cache

	Returns

	A dataframe containing entry names and specifciations.
For Dataset, specifications are molecule ids.
For ReactionDataset, specifications describe reaction stoichiometry.

	Return type

	pd.DataFrame

	
get_index(subset: Optional[List[str]] = None, force: bool = False) → List[str]

	Returns the current index of the database.

	Returns

	ret – The names of all reactions in the database

	Return type

	List[str]

	
get_keywords(alias: str, program: str, return_id: bool = False) → Union[KeywordSet, str]

	Pulls the keywords alias from the server for inspection.

	Parameters

	
	alias (str) – The keywords alias.

	program (str) – The program the keywords correspond to.

	return_id (bool, optional) – If True, returns the id rather than the KeywordSet object.
Description

	Returns

	The requested KeywordSet or KeywordSet id.

	Return type

	Union[‘KeywordSet’, str]

	
get_molecules(subset: Union[str, Set[str], None] = None, stoich: Union[str, List[str]] = 'default', force: bool = False) → pandas.core.frame.DataFrame

	Queries full Molecules from the database.

	Parameters

	
	subset (Optional[Union[str, Set[str]]], optional) – The index subset to query on

	stoich (Union[str, List[str]], optional) – The stoichiometries to pull from, either a single or multiple stoichiometries

	force (bool, optional) – Force pull of molecules from server

	Returns

	Indexed Molecules which match the stoich and subset string.

	Return type

	pd.DataFrame

	
get_records(method: str, basis: Optional[str] = None, *, keywords: Optional[str] = None, program: Optional[str] = None, stoich: Union[str, List[str]] = 'default', include: Optional[List[str]] = None, subset: Union[str, Set[str], None] = None) → Union[pandas.core.frame.DataFrame, ResultRecord]

	Queries the local Portal for the requested keys and stoichiometry.

	Parameters

	
	method (str) – The computational method to query on (B3LYP)

	basis (Optional[str], optional) – The computational basis to query on (6-31G)

	keywords (Optional[str], optional) – The option token desired

	program (Optional[str], optional) – The program to query on

	stoich (Union[str, List[str]], optional) – The given stoichiometry to compute.

	include (Optional[Dict[str, bool]], optional) – The attribute project to perform on the query, otherwise returns ResultRecord objects.

	subset (Optional[Union[str, Set[str]]], optional) – The index subset to query on

	Returns

	The name of the queried column

	Return type

	Union[pd.DataFrame, ‘ResultRecord’]

	
get_rxn(name: str) → qcportal.collections.reaction_dataset.ReactionEntry

	Returns the JSON object of a specific reaction.

	Parameters

	name (str) – The name of the reaction to query

	Returns

	ret – The JSON representation of the reaction

	Return type

	dict

	
get_values(method: Union[List[str], str, None] = None, basis: Union[List[str], str, None] = None, keywords: Optional[str] = None, program: Optional[str] = None, driver: Optional[str] = None, stoich: str = 'default', name: Union[List[str], str, None] = None, native: Optional[bool] = None, subset: Union[List[str], str, None] = None, force: bool = False) → pandas.core.frame.DataFrame

	
Obtains values from the known history from the search paramaters provided for the expected return_result values.
Defaults to the standard programs and keywords if not provided.

Note that unlike get_records, get_values will automatically expand searches and return multiple method
and basis combinations simultaneously.

None is a wildcard selector. To search for None, use “None”.

	methodOptional[Union[str, List[str]]], optional
	The computational method (B3LYP)

	basisOptional[Union[str, List[str]]], optional
	The computational basis (6-31G)

	keywordsOptional[str], optional
	The keyword alias

	programOptional[str], optional
	The underlying QC program

	driverOptional[str], optional
	The type of calculation (e.g. energy, gradient, hessian, dipole…)

	stoichstr, optional
	Stoichiometry of the reaction.

	nameOptional[Union[str, List[str]]], optional
	Canonical name of the record. Overrides the above selectors.

	native: Optional[bool], optional
	True: only include data computed with QCFractal
False: only include data contributed from outside sources
None: include both

	subset: Optional[List[str]], optional
	The indices of the desired subset. Return all indices if subset is None.

	forcebool, optional
	Data is typically cached, forces a new query if True

	Returns

	A DataFrame of values with columns corresponding to methods and rows corresponding to reaction entries.
Contributed (native=False) columns are marked with “(contributed)” and may include units in square brackets
if their units differ in dimensionality from the ReactionDataset’s default units.

	Return type

	DataFrame

	
list_records(dftd3: bool = False, pretty: bool = True, **search: Union[List[str], str, None]) → pandas.core.frame.DataFrame

	Lists specifications of available records, i.e. method, program, basis set, keyword set, driver combinations
None is a wildcard selector. To search for None, use “None”.

	Parameters

	
	pretty (bool) – Replace NaN with “None” in returned DataFrame

	**search (Dict[str, Optional[str]]) – Allows searching to narrow down return.

	Returns

	Record specifications matching **search.

	Return type

	DataFrame

	
list_values(method: Union[List[str], str, None] = None, basis: Union[List[str], str, None] = None, keywords: Optional[str] = None, program: Optional[str] = None, driver: Optional[str] = None, name: Union[List[str], str, None] = None, native: Optional[bool] = None, force: bool = False) → pandas.core.frame.DataFrame

	Lists available data that may be queried with get_values.
Results may be narrowed by providing search keys.
None is a wildcard selector. To search for None, use “None”.

	Parameters

	
	method (Optional[Union[str, List[str]]], optional) – The computational method (B3LYP)

	basis (Optional[Union[str, List[str]]], optional) – The computational basis (6-31G)

	keywords (Optional[str], optional) – The keyword alias

	program (Optional[str], optional) – The underlying QC program

	driver (Optional[str], optional) – The type of calculation (e.g. energy, gradient, hessian, dipole…)

	name (Optional[Union[str, List[str]]], optional) – The canonical name of the data column

	native (Optional[bool], optional) – True: only include data computed with QCFractal
False: only include data contributed from outside sources
None: include both

	force (bool, optional) – Data is typically cached, forces a new query if True

	Returns

	A DataFrame of the matching data specifications

	Return type

	DataFrame

	
parse_stoichiometry(stoichiometry: List[Tuple[Union[qcelemental.models.molecule.Molecule, str], float]]) → Dict[str, float]

	Parses a stiochiometry list.

	Parameters

	stoichiometry (list) – A list of tuples describing the stoichiometry.

	Returns

	A dictionary describing the stoichiometry for use in the database.
Keys are molecule hashes. Values are stoichiometric coefficients.

	Return type

	Dict[str, float]

Notes

	This function attempts to convert the molecule into its corresponding hash. The following will happen depending on the form of the Molecule.
	
	Molecule hash - Used directly in the stoichiometry.

	Molecule class - Hash is obtained and the molecule will be added to the database upon saving.

	Molecule string - Molecule will be converted to a Molecule class and the same process as the above will occur.

	
save(client: Optional[FractalClient] = None) → ObjectId

	Uploads the overall structure of the Collection (indices, options, new molecules, etc)
to the server.

	Parameters

	client (FractalClient, optional) – A FractalClient connected to a server to upload to

	Returns

	The ObjectId of the saved collection.

	Return type

	ObjectId

	
set_default_benchmark(benchmark: str) → bool

	Sets the default benchmark value.

	Parameters

	benchmark (str) – The benchmark to default to.

	
set_default_program(program: str) → bool

	Sets the default program.

	Parameters

	program (str) – The program to default to.

	
set_view(path: Union[str, pathlib.Path]) → None

	Set a dataset to use a local view.

	Parameters

	path (Union[str, Path]) – path to an hdf5 file representing a view for this dataset

	
statistics(stype: str, value: str, bench: Optional[str] = None, **kwargs: Dict[str, Any]) → Union[numpy.ndarray, pandas.core.series.Series, numpy.float64]

	Provides statistics for various columns in the underlying dataframe.

	Parameters

	
	stype (str) – The type of statistic in question

	value (str) – The method string to compare

	bench (str, optional) – The benchmark method for the comparison, defaults to default_benchmark.

	kwargs (Dict[str, Any]) – Additional kwargs to pass to the statistics functions

	Returns

	Returns an ndarray, Series, or float with the requested statistics depending on input.

	Return type

	np.ndarray, pd.Series, float

	
ternary(cvals=None)

	Plots a ternary diagram of the DataBase if available

	Parameters

	cvals (None, optional) – Description

	
to_file(path: Union[str, pathlib.Path], encoding: str) → None

	Writes a view of the dataset to a file

	Parameters

	
	path (Union[str, Path]) – Where to write the file

	encoding (str) – Options: plaintext, hdf5

	
to_json(filename: Optional[str] = None)

	If a filename is provided, dumps the file to disk. Otherwise returns a copy of the current data.

	Parameters

	filename (str, Optional, Default: None) – The filename to drop the data to.

	Returns

	ret – A JSON representation of the Collection

	Return type

	dict

	
visualize(method: Optional[str] = None, basis: Optional[str] = None, keywords: Optional[str] = None, program: Optional[str] = None, stoich: str = 'default', groupby: Optional[str] = None, metric: str = 'UE', bench: Optional[str] = None, kind: str = 'bar', return_figure: Optional[bool] = None) → plotly.Figure

	
	Parameters

	
	method (Optional[str], optional) – Methods to query

	basis (Optional[str], optional) – Bases to query

	keywords (Optional[str], optional) – Keyword aliases to query

	program (Optional[str], optional) – Programs aliases to query

	stoich (str, optional) – Stoichiometry to query

	groupby (Optional[str], optional) – Groups the plot by this index.

	metric (str, optional) – The metric to use either UE (unsigned error) or URE (unsigned relative error)

	bench (Optional[str], optional) – The benchmark level of theory to use

	kind (str, optional) – The kind of chart to produce, either ‘bar’ or ‘violin’

	return_figure (Optional[bool], optional) – If True, return the raw plotly figure. If False, returns a hosted iPlot. If None, return a iPlot display in Jupyter notebook and a raw plotly figure in all other circumstances.

	Returns

	The requested figure.

	Return type

	plotly.Figure

Optimization Dataset

The OptimizationDataset collection represents geometry optimizations
performed on a series of Molecules.
OptimizationDataset use specifications to manage parameters of the
geometry optimizer and underlying
gradient calculation.

Existing OptimizationDataset can be listed with
FractalClient.list_collections("OptimizationDataset")
and obtained with FractalClient.get_collection("OptimizationDataset", name).

Querying

List specifications:

ds.list_specifications()

Show status of calculations for a given specification:

ds.status(["default"])

The number of geometry steps for each molecule can be shown:

ds.counts()

Individual OptimizationRecords can be extracted:

ds.get_record(name="CCO-0", specification="default")

Visualizing

See qcportal.models.OptimizationRecord.show_history.

Creating

Create a new collection:

ds = ptl.collections.OptimizationDataset(name = "QM8-T", client=client)

Provide a specification:

spec = {'name': 'default',
 'description': 'Geometric + Psi4/B3LYP-D3/Def2-SVP.',
 'optimization_spec': {'program': 'geometric', 'keywords': None},
 'qc_spec': {'driver': 'gradient',
 'method': 'b3lyp-d3',
 'basis': 'def2-svp',
 'keywords': None,
 'program': 'psi4'}}
 ds.add_specification(**spec)
 ds.save()

Add molecules to optimize:

ds.add_entry(name, molecule)

If adding molecules in batches, you may wish to defer saving the dataset to the server until all molecules are added:

for name, molecule in new_entries:
 ds.add_entry(name, molecule, save=False)
ds.save()

Computing

ds.compute(specification="default", tag="optional_tag")

API

	
class qcportal.collections.OptimizationDataset(name: str, client: FractalClient = None, **kwargs)

	
	
class DataModel

	
	Parameters

	
	id (str, Default: local)

	name (str)

	collection (str)

	provenance (name=’provenance’ type=Mapping[str, str] required=False default={}, Default: {})

	tags (List[str], Default: [])

	tagline (str, Optional)

	description (str, Optional)

	group (str, Default: default)

	visibility (bool, Default: True)

	view_url_hdf5 (str, Optional)

	view_url_plaintext (str, Optional)

	view_metadata (name=’view_metadata’ type=Optional[Mapping[str, str]] required=False default=None, Optional)

	view_available (bool, Default: False)

	metadata (Dict[str, Any], Default: {})

	records (OptEntry, Default: {})

	history (Set[str], Default: set())

	specs (OptEntrySpecification, Default: {})

	
compare(other: Union[ProtoModel, pydantic.main.BaseModel], **kwargs) → bool

	Compares the current object to the provided object recursively.

	Parameters

	
	other (Model) – The model to compare to.

	**kwargs – Additional kwargs to pass to qcelemental.compare_recursive.

	Returns

	True if the objects match.

	Return type

	bool

	
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

	Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.

	
copy

	Duplicate a model, optionally choose which fields to include, exclude and change.

	Parameters

	
	include – fields to include in new model

	exclude – fields to exclude from new model, as with values this takes precedence over include

	update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data

	deep – set to True to make a deep copy of the model

	Returns

	new model instance

	
dict(**kwargs) → Dict[str, Any]

	Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

	
json(**kwargs)

	Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

	
classmethod parse_file(path: Union[str, pathlib.Path], *, encoding: str = None) → qcelemental.models.basemodels.ProtoModel

	Parses a file into a Model object.

	Parameters

	
	path (Union[str, Path]) – The path to the file.

	encoding (str, optional) – The type of the files, available types are: {‘json’, ‘msgpack’, ‘pickle’}. Attempts to
automatically infer the file type from the file extension if None.

	Returns

	The requested model from a serialized format.

	Return type

	Model

	
classmethod parse_raw(data: Union[bytes, str], *, encoding: str = None) → qcelemental.models.basemodels.ProtoModel

	Parses raw string or bytes into a Model object.

	Parameters

	
	data (Union[bytes, str]) – A serialized data blob to be deserialized into a Model.

	encoding (str, optional) – The type of the serialized array, available types are: {‘json’, ‘json-ext’, ‘msgpack-ext’, ‘pickle’}

	Returns

	The requested model from a serialized format.

	Return type

	Model

	
serialize(encoding: str, *, include: Optional[Set[str]] = None, exclude: Optional[Set[str]] = None, exclude_unset: Optional[bool] = None) → Union[bytes, str]

	Generates a serialized representation of the model

	Parameters

	
	encoding (str) – The serialization type, available types are: {‘json’, ‘json-ext’, ‘msgpack-ext’}

	include (Optional[Set[str]], optional) – Fields to be included in the serialization.

	exclude (Optional[Set[str]], optional) – Fields to be excluded in the serialization.

	exclude_unset (Optional[bool], optional) – If True, skips fields that have default values provided.

	Returns

	The serialized model.

	Return type

	Union[bytes, str]

	
classmethod update_forward_refs(**localns: Any) → None

	Try to update ForwardRefs on fields based on this Model, globalns and localns.

	
add_entry(name: str, initial_molecule: Molecule, additional_keywords: Optional[Dict[str, Any]] = None, attributes: Optional[Dict[str, Any]] = None, save: bool = True) → None

	
	Parameters

	
	name (str) – The name of the entry, will be used for the index

	initial_molecule (Molecule) – The list of starting Molecules for the Optimization

	additional_keywords (Dict[str, Any], optional) – Additional keywords to add to the optimization run

	attributes (Dict[str, Any], optional) – Additional attributes and descriptions for the entry

	save (bool, optional) – If true, saves the collection after adding the entry. If this is False be careful
to call save after all entries are added, otherwise data pointers may be lost.

	
add_specification(name: str, optimization_spec: qcportal.models.common_models.OptimizationSpecification, qc_spec: qcportal.models.common_models.QCSpecification, description: Optional[str] = None, protocols: Optional[Dict[str, Any]] = None, overwrite=False) → None

	
	Parameters

	
	name (str) – The name of the specification

	optimization_spec (OptimizationSpecification) – A full optimization specification for Optimization

	qc_spec (QCSpecification) – A full quantum chemistry specification for Optimization

	description (str, optional) – A short text description of the specification

	protocols (Optional[Dict[str, Any]], optional) – Protocols for this specification.

	overwrite (bool, optional) – Overwrite existing specification names

	
compute(specification: str, subset: Set[str] = None, tag: Optional[str] = None, priority: Optional[str] = None) → int

	Computes a specification for all entries in the dataset.

	Parameters

	
	specification (str) – The specification name.

	subset (Set[str], optional) – Computes only a subset of the dataset.

	tag (Optional[str], optional) – The queue tag to use when submitting compute requests.

	priority (Optional[str], optional) – The priority of the jobs low, medium, or high.

	Returns

	The number of submitted computations

	Return type

	int

	
counts(entries: Union[List[str], str, None] = None, specs: Union[List[str], str, None] = None) → pandas.core.frame.DataFrame

	Counts the number of optimization or gradient evaluations associated with the
Optimizations.

	Parameters

	
	entries (Union[str, List[str]]) – The entries to query for

	specs (Optional[Union[str, List[str]]], optional) – The specifications to query for

	count_gradients (bool, optional) – If True, counts the total number of gradient calls. Warning! This can be slow for large datasets.

	Returns

	The queried counts.

	Return type

	DataFrame

	
classmethod from_json(data: Dict[str, Any], client: FractalClient = None) → Collection

	Creates a new class from a JSON blob

	Parameters

	
	data (Dict[str, Any]) – The JSON blob to create a new class from.

	client (FractalClient, optional) – A FractalClient connected to a server

	Returns

	A constructed collection.

	Return type

	Collection

	
classmethod from_server(client: FractalClient, name: str) → Collection

	Creates a new class from a server

	Parameters

	
	client (FractalClient) – A FractalClient connected to a server

	name (str) – The name of the collection to pull from.

	Returns

	A constructed collection.

	Return type

	Collection

	
get_entry(name: str) → Any

	Obtains a record from the Dataset

	Parameters

	name (str) – The record name to pull from.

	Returns

	The requested record

	Return type

	Record

	
get_record(name: str, specification: str) → Any

	Pulls an individual computational record of the requested name and column.

	Parameters

	
	name (str) – The index name to pull the record of.

	specification (str) – The name of specification to pull the record of.

	Returns

	The requested Record

	Return type

	Any

	
get_specification(name: str) → Any

	
	Parameters

	name (str) – The name of the specification

	Returns

	The requested specification.

	Return type

	Specification

	
list_specifications(description=True) → Union[List[str], pandas.core.frame.DataFrame]

	Lists all available specifications

	Parameters

	description (bool, optional) – If True returns a DataFrame with
Description

	Returns

	A list of known specification names.

	Return type

	Union[List[str], ‘DataFrame’]

	
query(specification: str, force: bool = False) → str

	Queries a given specification from the server

	Parameters

	
	specification (str) – The specification name to query

	force (bool, optional) – Force a fresh query if the specification already exists.

	
save(client: Optional[FractalClient] = None) → ObjectId

	Uploads the overall structure of the Collection (indices, options, new molecules, etc)
to the server.

	Parameters

	client (FractalClient, optional) – A FractalClient connected to a server to upload to

	Returns

	The ObjectId of the saved collection.

	Return type

	ObjectId

	
status(specs: Union[str, List[str]] = None, collapse: bool = True, status: Optional[str] = None, detail: bool = False) → pandas.core.frame.DataFrame

	Returns the status of all current specifications.

	Parameters

	
	collapse (bool, optional) – Collapse the status into summaries per specification or not.

	status (Optional[str], optional) – If not None, only returns results that match the provided status.

	detail (bool, optional) – Shows a detailed description of the current status of incomplete jobs.

	Returns

	A DataFrame of all known statuses

	Return type

	DataFrame

	
to_json(filename: Optional[str] = None)

	If a filename is provided, dumps the file to disk. Otherwise returns a copy of the current data.

	Parameters

	filename (str, Optional, Default: None) – The filename to drop the data to.

	Returns

	ret – A JSON representation of the Collection

	Return type

	dict

TorsionDrive Dataset

See also the QCArchive example [https://qcarchivetutorials.readthedocs.io/en/latest/basic_examples/torsiondrive_datasets.html] for TorsionDrive datasets.

TorsionDriveDatasets are sets of TorsionDrive computations where the primary
index a set of starting molecules and each column is represented by a new
TorsionDrive specification. This Dataset is a procedure-style dataset where a
record of the ObjectId of each TorsionDrive computation are recorded
in the metadata.

Querying

Visualizing

Creating

A empty TorsionDriveDataset can be constructed by choosing a dataset name.

client = ptl.FractalClient("localhost:7777")
ds = ptl.collections.TorsionDriveDataset("My Torsions")

Computing

API

	
class qcfractal.interface.collections.TorsionDriveDataset(name: str, client: FractalClient = None, **kwargs)

	
	
class DataModel

	
	Parameters

	
	id (str, Default: local)

	name (str)

	collection (str)

	provenance (name=’provenance’ type=Mapping[str, str] required=False default={}, Default: {})

	tags (List[str], Default: [])

	tagline (str, Optional)

	description (str, Optional)

	group (str, Default: default)

	visibility (bool, Default: True)

	view_url_hdf5 (str, Optional)

	view_url_plaintext (str, Optional)

	view_metadata (name=’view_metadata’ type=Optional[Mapping[str, str]] required=False default=None, Optional)

	view_available (bool, Default: False)

	metadata (Dict[str, Any], Default: {})

	records (TDEntry, Default: {})

	history (Set[str], Default: set())

	specs (TDEntrySpecification, Default: {})

	
compare(other: Union[ProtoModel, pydantic.main.BaseModel], **kwargs) → bool

	Compares the current object to the provided object recursively.

	Parameters

	
	other (Model) – The model to compare to.

	**kwargs – Additional kwargs to pass to qcelemental.compare_recursive.

	Returns

	True if the objects match.

	Return type

	bool

	
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

	Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.

	
copy

	Duplicate a model, optionally choose which fields to include, exclude and change.

	Parameters

	
	include – fields to include in new model

	exclude – fields to exclude from new model, as with values this takes precedence over include

	update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data

	deep – set to True to make a deep copy of the model

	Returns

	new model instance

	
dict(**kwargs) → Dict[str, Any]

	Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

	
json(**kwargs)

	Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

	
classmethod parse_file(path: Union[str, pathlib.Path], *, encoding: str = None) → qcelemental.models.basemodels.ProtoModel

	Parses a file into a Model object.

	Parameters

	
	path (Union[str, Path]) – The path to the file.

	encoding (str, optional) – The type of the files, available types are: {‘json’, ‘msgpack’, ‘pickle’}. Attempts to
automatically infer the file type from the file extension if None.

	Returns

	The requested model from a serialized format.

	Return type

	Model

	
classmethod parse_raw(data: Union[bytes, str], *, encoding: str = None) → qcelemental.models.basemodels.ProtoModel

	Parses raw string or bytes into a Model object.

	Parameters

	
	data (Union[bytes, str]) – A serialized data blob to be deserialized into a Model.

	encoding (str, optional) – The type of the serialized array, available types are: {‘json’, ‘json-ext’, ‘msgpack-ext’, ‘pickle’}

	Returns

	The requested model from a serialized format.

	Return type

	Model

	
serialize(encoding: str, *, include: Optional[Set[str]] = None, exclude: Optional[Set[str]] = None, exclude_unset: Optional[bool] = None) → Union[bytes, str]

	Generates a serialized representation of the model

	Parameters

	
	encoding (str) – The serialization type, available types are: {‘json’, ‘json-ext’, ‘msgpack-ext’}

	include (Optional[Set[str]], optional) – Fields to be included in the serialization.

	exclude (Optional[Set[str]], optional) – Fields to be excluded in the serialization.

	exclude_unset (Optional[bool], optional) – If True, skips fields that have default values provided.

	Returns

	The serialized model.

	Return type

	Union[bytes, str]

	
classmethod update_forward_refs(**localns: Any) → None

	Try to update ForwardRefs on fields based on this Model, globalns and localns.

	
add_entry(name: str, initial_molecules: List[Molecule], dihedrals: List[Tuple[int, int, int, int]], grid_spacing: List[int], dihedral_ranges: Optional[List[Tuple[int, int]]] = None, energy_decrease_thresh: Optional[float] = None, energy_upper_limit: Optional[float] = None, attributes: Dict[str, Any] = None, save: bool = True) → None

	
	Parameters

	
	name (str) – The name of the entry, will be used for the index

	initial_molecules (List[Molecule]) – The list of starting Molecules for the TorsionDrive

	dihedrals (List[Tuple[int, int, int, int]]) – A list of dihedrals to scan over

	grid_spacing (List[int]) – The grid spacing for each dihedrals

	dihedral_ranges (Optional[List[Tuple[int, int]]]) – The range limit of each dihedrals to scan, within [-180, 360]

	energy_decrease_thresh (Optional[float]) – The threshold of energy decrease to trigger activating grid points

	energy_upper_limit (Optional[float]) – The upper limit of energy relative to current global minimum to trigger activating grid points

	attributes (Dict[str, Any], optional) – Additional attributes and descriptions for the entry

	save (bool, optional) – If true, saves the collection after adding the entry. If this is False be careful
to call save after all entries are added, otherwise data pointers may be lost.

	
add_specification(name: str, optimization_spec: qcfractal.interface.models.common_models.OptimizationSpecification, qc_spec: qcfractal.interface.models.common_models.QCSpecification, description: Optional[str] = None, overwrite: bool = False) → None

	
	Parameters

	
	name (str) – The name of the specification

	optimization_spec (OptimizationSpecification) – A full optimization specification for TorsionDrive

	qc_spec (QCSpecification) – A full quantum chemistry specification for TorsionDrive

	description (str, optional) – A short text description of the specification

	overwrite (bool, optional) – Overwrite existing specification names

	
compute(specification: str, subset: Set[str] = None, tag: Optional[str] = None, priority: Optional[str] = None) → int

	Computes a specification for all entries in the dataset.

	Parameters

	
	specification (str) – The specification name.

	subset (Set[str], optional) – Computes only a subset of the dataset.

	tag (Optional[str], optional) – The queue tag to use when submitting compute requests.

	priority (Optional[str], optional) – The priority of the jobs low, medium, or high.

	Returns

	The number of submitted computations

	Return type

	int

	
counts(entries: Union[str, List[str]], specs: Union[List[str], str, None] = None, count_gradients: bool = False) → pandas.core.frame.DataFrame

	Counts the number of optimization or gradient evaluations associated with the
TorsionDrives.

	Parameters

	
	entries (Union[str, List[str]]) – The entries to query for

	specs (Optional[Union[str, List[str]]], optional) – The specifications to query for

	count_gradients (bool, optional) – If True, counts the total number of gradient calls. Warning! This can be slow for large datasets.

	Returns

	The queried counts.

	Return type

	DataFrame

	
classmethod from_json(data: Dict[str, Any], client: FractalClient = None) → Collection

	Creates a new class from a JSON blob

	Parameters

	
	data (Dict[str, Any]) – The JSON blob to create a new class from.

	client (FractalClient, optional) – A FractalClient connected to a server

	Returns

	A constructed collection.

	Return type

	Collection

	
classmethod from_server(client: FractalClient, name: str) → Collection

	Creates a new class from a server

	Parameters

	
	client (FractalClient) – A FractalClient connected to a server

	name (str) – The name of the collection to pull from.

	Returns

	A constructed collection.

	Return type

	Collection

	
get_entry(name: str) → Any

	Obtains a record from the Dataset

	Parameters

	name (str) – The record name to pull from.

	Returns

	The requested record

	Return type

	Record

	
get_record(name: str, specification: str) → Any

	Pulls an individual computational record of the requested name and column.

	Parameters

	
	name (str) – The index name to pull the record of.

	specification (str) – The name of specification to pull the record of.

	Returns

	The requested Record

	Return type

	Any

	
get_specification(name: str) → Any

	
	Parameters

	name (str) – The name of the specification

	Returns

	The requested specification.

	Return type

	Specification

	
list_specifications(description=True) → Union[List[str], pandas.core.frame.DataFrame]

	Lists all available specifications

	Parameters

	description (bool, optional) – If True returns a DataFrame with
Description

	Returns

	A list of known specification names.

	Return type

	Union[List[str], ‘DataFrame’]

	
query(specification: str, force: bool = False) → str

	Queries a given specification from the server

	Parameters

	
	specification (str) – The specification name to query

	force (bool, optional) – Force a fresh query if the specification already exists.

	
save(client: Optional[FractalClient] = None) → ObjectId

	Uploads the overall structure of the Collection (indices, options, new molecules, etc)
to the server.

	Parameters

	client (FractalClient, optional) – A FractalClient connected to a server to upload to

	Returns

	The ObjectId of the saved collection.

	Return type

	ObjectId

	
status(specs: Union[str, List[str]] = None, collapse: bool = True, status: Optional[str] = None, detail: bool = False) → pandas.core.frame.DataFrame

	Returns the status of all current specifications.

	Parameters

	
	collapse (bool, optional) – Collapse the status into summaries per specification or not.

	status (Optional[str], optional) – If not None, only returns results that match the provided status.

	detail (bool, optional) – Shows a detailed description of the current status of incomplete jobs.

	Returns

	A DataFrame of all known statuses

	Return type

	DataFrame

	
to_json(filename: Optional[str] = None)

	If a filename is provided, dumps the file to disk. Otherwise returns a copy of the current data.

	Parameters

	filename (str, Optional, Default: None) – The filename to drop the data to.

	Returns

	ret – A JSON representation of the Collection

	Return type

	dict

	
visualize(entries: Union[str, List[str]], specs: Union[str, List[str]], relative: bool = True, units: str = 'kcal / mol', digits: int = 3, use_measured_angle: bool = False, return_figure: Optional[bool] = None) → plotly.Figure

	
	Parameters

	
	entries (Union[str, List[str]]) – A single or list of indices to plot.

	specs (Union[str, List[str]]) – A single or list of specifications to plot.

	relative (bool, optional) – Shows relative energy, lowest energy per scan is zero.

	units (str, optional) – The units of the plot.

	digits (int, optional) – Rounds the energies to n decimal places for display.

	use_measured_angle (bool, optional) – If True, the measured final angle instead of the constrained optimization angle.
Can provide more accurate results if the optimization was ill-behaved,
but pulls additional data from the server and may take longer.

	return_figure (Optional[bool], optional) – If True, return the raw plotly figure. If False, returns a hosted iPlot. If None, return a iPlot display in Jupyter notebook and a raw plotly figure in all other circumstances.

	Returns

	The requested figure.

	Return type

	plotly.Figure

Common Tasks

Check computation progress

The FractalClient.query_tasks method returns information on active tasks.

client = qcportal.FractalClient(...)
client.query_tasks(status='WAITING') # return tasks in queue
client.query_tasks(status='RUNNING') # return running tasks

The tag and manager fields may be used to find only your tasks.

Find Errors and Restart Jobs

Some jobs may fail, and will end up in the ERROR state.

myerrs = client.query_tasks(status='ERROR') # return errored tasks

Errored jobs may be inspected:

record = client.query_results(mye[0].base_result.id)[0]
print(record.stdout) # Standard output
print(record.stderr) # Standard error
print(client.query_kvstore(record.error)[0]) # Error message

and restarted:

res = client.modify_tasks("restart", [e.base_result.id for e in myerrs])
print(res.n_updated)

Delete a column

You may wish to remove a model from a Dataset
or ReactionDataset.
Models are stored in Dataset.data.history, and can be removed from there:

print(ds.data.history)
Output e.g.
{('energy', 'psi4', 'b3lyp', 'def2-svp', 'scf_default'),
('energy', 'psi4', 'hf', 'sto-3g', 'scf_default'),
('energy', 'psi4', 'lda', 'sto-3g', 'scf_default')}

ds.data.history.remove(('energy', 'psi4', 'lda', 'sto-3g', 'scf_default'))
ds.save()

ds = client.get_collection(...)
print(ds.data.history)
Output e.g.
{('energy', 'psi4', 'b3lyp', 'def2-svp', 'scf_default'),
('energy', 'psi4', 'hf', 'sto-3g', 'scf_default')}

See also

Many examples of interacting with collections hosted on QCArchive are provided on the QCArchive Examples [https://qcarchive.molssi.org/examples/] page.

Overview

A Record is the stored values of a completed computation. Each Record type corresponds to a specific operation that QCArchive has formatted.

Several examples are:

	Result - A single quantum chemistry (or quantum chemistry-like) energy, gradient, Hesssian, or property computation.

	Optimization - A geometry optimization at a given level of theory.

	GridOptimization - Chains of geometry optimizations where starting structures depend on previous structures.

	TorsionDrive - A special type of GridOptimization specifically for torsion scans that is able to overcome local minimum structures to find globally optimal ones.

In general records are indexed based off a hash and are often found and queried through a Collection rather than directly.

Results

A result is a single quantum chemistry method evaluation, which can be an energy, gradient, Hessian, or property computation.

Attributes

	
class qcportal.models.ResultRecord(**data)

	
	Parameters

	
	client (Any, Optional) – The client object which the records are fetched from.

	cache (Dict[str, Any], Default: {}) – Object cache from expensive queries. It should be very rare that this needs to be set manually by the user.

	id (ObjectId, Optional) – Id of the object on the database. This is assigned automatically by the database.

	hash_index (str, Optional) – Hash of this object used to detect duplication and collisions in the database.

	procedure (ConstrainedStrValue, Default: single) – Procedure is fixed as “single” because this is single quantum chemistry result.

	program (str) – The quantum chemistry program which carries out the individual quantum chemistry calculations.

	version (int, Default: 1) – Version of the ResultRecord Model which this data was created with.

	protocols (ResultProtocols, Optional)

	extras (Dict[str, Any], Default: {}) – Extra information to associate with this record.

	stdout (ObjectId, Optional) – The Id of the stdout data stored in the database which was used to generate this record from the various programs which were called in the process.

	stderr (ObjectId, Optional) – The Id of the stderr data stored in the database which was used to generate this record from the various programs which were called in the process.

	error (ObjectId, Optional) – The Id of the error data stored in the database in the event that an error was generated in the process of carrying out the process this record targets. If no errors were raised, this field will be empty.

	task_id (ObjectId, Optional) – Id of the compute task tracked by Fractal in its TaskTable.

	manager_name (str, Optional) – Name of the Queue Manager which generated this record.

	status ({COMPLETE,INCOMPLETE,RUNNING,ERROR}, Default: INCOMPLETE) – The state of a record object. The states which are available are a finite set.

	modified_on (datetime, Optional) – Last time the data this record points to was modified.

	created_on (datetime, Optional) – Time the data this record points to was first created.

	provenance (Provenance, Optional) – Provenance information tied to the creation of this record. This includes things such as every program which was involved in generating the data for this record.

	driver ({energy,gradient,hessian,properties}) – The type of calculation that is being performed (e.g., energy, gradient, Hessian, …).

	method (str) – The quantum chemistry method the driver runs with.

	molecule (ObjectId) – The Id of the molecule in the Database which the result is computed on.

	basis (str, Optional) – The quantum chemistry basis set to evaluate (e.g., 6-31g, cc-pVDZ, …). Can be None for methods without basis sets.

	keywords (ObjectId, Optional) – The Id of the KeywordSet which was passed into the quantum chemistry program that performed this calculation.

	return_result (Union[float, Array, Dict[str, Any]], Optional) – The primary result of the calculation, output is a function of the specified driver.

	properties (ResultProperties, Optional) – Additional data and results computed as part of the return_result.

	wavefunction (Dict[str, Any], Optional) – Wavefunction data generated by the Result.

	wavefunction_data_id (ObjectId, Optional) – The id of the wavefunction

Examples

Query Example

This notebook will cover example usage of Result record. As a note we will be using the MolSSI QCArchive server as a data source. Any ids used in this example will not be valid for local servers.

[2]:

import qcfractal.interface as ptl
client = ptl.FractalClient()
client

[2]:

FractalClient

 	Server:

 Optimization

Optimization

The record of a geometry optimization.

Attributes

	
class qcportal.models.OptimizationRecord(**data)

	A OptimizationRecord for all optimization procedure data.

	Parameters

	
	client (Any, Optional) – The client object which the records are fetched from.

	cache (Dict[str, Any], Default: {}) – Object cache from expensive queries. It should be very rare that this needs to be set manually by the user.

	id (ObjectId, Optional) – Id of the object on the database. This is assigned automatically by the database.

	hash_index (str, Optional) – Hash of this object used to detect duplication and collisions in the database.

	procedure (ConstrainedStrValue, Default: optimization) – A fixed string indication this is a record for an “Optimization”.

	program (str) – The quantum chemistry program which carries out the individual quantum chemistry calculations.

	version (int, Default: 1) – Version of the OptimizationRecord Model which this data was created with.

	protocols (OptimizationProtocols, Optional)

	extras (Dict[str, Any], Default: {}) – Extra information to associate with this record.

	stdout (ObjectId, Optional) – The Id of the stdout data stored in the database which was used to generate this record from the various programs which were called in the process.

	stderr (ObjectId, Optional) – The Id of the stderr data stored in the database which was used to generate this record from the various programs which were called in the process.

	error (ObjectId, Optional) – The Id of the error data stored in the database in the event that an error was generated in the process of carrying out the process this record targets. If no errors were raised, this field will be empty.

	task_id (ObjectId, Optional) – Id of the compute task tracked by Fractal in its TaskTable.

	manager_name (str, Optional) – Name of the Queue Manager which generated this record.

	status ({COMPLETE,INCOMPLETE,RUNNING,ERROR}, Default: INCOMPLETE) – The state of a record object. The states which are available are a finite set.

	modified_on (datetime, Optional) – Last time the data this record points to was modified.

	created_on (datetime, Optional) – Time the data this record points to was first created.

	provenance (Provenance, Optional) – Provenance information tied to the creation of this record. This includes things such as every program which was involved in generating the data for this record.

	schema_version (int, Default: 1) – The version number of QCSchema under which this record conforms to.

	initial_molecule (ObjectId) – The Id of the molecule which was passed in as the reference for this Optimization.

	qc_spec (QCSpecification) – The specification of the quantum chemistry calculation to run at each point.

	keywords (Dict[str, Any], Default: {}) – The keyword options which were passed into the Optimization program. Note: These are a dictionary and not a KeywordSet object.

	energies (List[float], Optional) – The ordered list of energies at each step of the Optimization.

	final_molecule (ObjectId, Optional) – The ObjectId of the final, optimized Molecule the Optimization procedure converged to.

	trajectory (List[ObjectId], Optional) – The list of Molecule Id’s the Optimization procedure generated at each step of the optimization.``initial_molecule`` will be the first index, and final_molecule will be the last index.

	
build_schema_input(initial_molecule: Molecule, qc_keywords: Optional[KeywordSet] = None, checks: bool = True) → OptimizationInput

	Creates a OptimizationInput schema.

	
get_final_energy() → float

	The final energy of the geometry optimization.

	Returns

	The optimization molecular energy.

	Return type

	float

	
get_final_molecule() → Molecule

	Returns the optimized molecule

	Returns

	The optimized molecule

	Return type

	Molecule

	
get_initial_molecule() → Molecule

	Returns the initial molecule

	Returns

	The initial molecule

	Return type

	Molecule

	
get_molecular_trajectory() → List[Molecule]

	Returns the Molecule at each gradient evaluation in the trajectory.

	Returns

	A ordered list of Molecules in the trajectory.

	Return type

	List[‘Molecule’]

	
get_trajectory() → List[qcportal.models.records.ResultRecord]

	Returns the Result records for each gradient evaluation in the trajectory.

	Returns

	A ordered list of Result record gradient computations.

	Return type

	List[‘ResultRecord’]

	
show_history(units: str = 'kcal/mol', digits: int = 3, relative: bool = True, return_figure: Optional[bool] = None) → plotly.Figure

	Plots the energy of the trajectory the optimization took.

	Parameters

	
	units (str, optional) – Units to display the trajectory in.

	digits (int, optional) – The number of valid digits to show.

	relative (bool, optional) – If True, all energies are shifted by the lowest energy in the trajectory. Otherwise provides raw energies.

	return_figure (Optional[bool], optional) – If True, return the raw plotly figure. If False, returns a hosted iPlot. If None, return a iPlot display in
Jupyter notebook and a raw plotly figure in all other circumstances.

	Returns

	The requested figure.

	Return type

	plotly.Figure

 Examples

Examples

Query Example

This notebook will cover example usage of Optimization record. As a note we will be using the MolSSI QCArchive server as a data source. Any ids used in this example will not be valid for local servers.

[1]:

import qcfractal.interface as ptl
client = ptl.FractalClient()
client

[1]:

FractalClient

 	Server:

 API

API

The complete set of object models and relations implemented by QCPortal. Every class shown here is its own model
and the attributes shown are valid kwargs and values which can be fed into the construction.

	
class qcportal.models.KeywordSet(**data)

	A key:value storage object for Keywords.

	Parameters

	
	id (ObjectId, Optional) – The Id of this object, will be automatically assigned when added to the database.

	hash_index (str) – The hash of this keyword set to store and check for collisions. This string is automatically computed.

	values (Dict[str, Union[Any, NoneType]]) – The key-value pairs which make up this KeywordSet. There is no direct relation between this dictionary and applicable program/spec it can be used on.

	lowercase (bool, Default: True) – String keys are in the values dict are normalized to lowercase if this is True. Assists in matching against other KeywordSet objects in the database.

	exact_floats (bool, Default: False) – All floating point numbers are rounded to 1.e-10 if this is False.Assists in matching against other KeywordSet objects in the database.

	comments (str, Optional) – Additional comments for this KeywordSet. Intended for pure human/user consumption and clarity.

	
class qcportal.models.Molecule(orient: bool = False, validate: Optional[bool] = None, **kwargs: Any)

	A QCSchema representation of a Molecule. This model contains
data for symbols, geometry, connectivity, charges, fragmentation, etc while also supporting a wide array of I/O and manipulation capabilities.

Molecule objects geometry, masses, and charges are truncated to 8, 6, and 4 decimal places respectively to assist with duplicate detection.

	Parameters

	
	schema_name (ConstrainedStrValue, Default: qcschema_molecule) – The QCSchema specification this model conforms to. Explicitly fixed as qcschema_molecule.

	schema_version (int, Default: 2) – The version number of schema_name that this Molecule model conforms to.

	validated (bool, Default: False) – A boolean indicator (for speed purposes) that the input Molecule data has been previously checked for schema (data layout and type) and physics (e.g., non-overlapping atoms, feasible multiplicity) compliance. This should be False in most cases. A True setting should only ever be set by the constructor for this class itself or other trusted sources such as a Fractal Server or previously serialized Molecules.

	symbols (Array) – An ordered (nat,) array-like object of atomic elemental symbols of shape (nat,). The index of this attribute sets atomic order for all other per-atom setting like real and the first dimension of geometry. Ghost/Virtual atoms must have an entry in this array-like and are indicated by the matching the 0-indexed indices in real field.

	geometry (Array) – An ordered (nat,3) array-like for XYZ atomic coordinates [a0]. Atom ordering is fixed; that is, a consumer who shuffles atoms must not reattach the input (pre-shuffling) molecule schema instance to any output (post-shuffling) per-atom results (e.g., gradient). Index of the first dimension matches the 0-indexed indices of all other per-atom settings like symbols and real.
Can also accept array-likes which can be mapped to (nat,3) such as a 1-D list of length 3*nat, or the serialized version of the array in (3*nat,) shape; all forms will be reshaped to (nat,3) for this attribute.

	name (str, Optional) – A common or human-readable name to assign to this molecule. Can be arbitrary.

	identifiers (Identifiers, Optional) – An optional dictionary of additional identifiers by which this Molecule can be referenced, such as INCHI, canonical SMILES, etc. See the :class:Identifiers model for more details.

	comment (str, Optional) – Additional comments for this Molecule. Intended for pure human/user consumption and clarity.

	molecular_charge (float, Default: 0.0) – The net electrostatic charge of this Molecule.

	molecular_multiplicity (int, Default: 1) – The total multiplicity of this Molecule.

	masses_ (Array, Optional) – An ordered 1-D array-like object of atomic masses [u] of shape (nat,). Index order matches the 0-indexed indices of all other per-atom settings like symbols and real. If this is not provided, the mass of each atom is inferred from their most common isotope. If this is provided, it must be the same length as symbols but can accept None entries for standard masses to infer from the same index in the symbols field.

	real_ (Array, Optional) – An ordered 1-D array-like object of shape (nat,) indicating if each atom is real (True) or ghost/virtual (False). Index matches the 0-indexed indices of all other per-atom settings like symbols and the first dimension of geometry. If this is not provided, all atoms are assumed to be real (True).If this is provided, the reality or ghostality of every atom must be specified.

	atom_labels_ (Array, Optional) – Additional per-atom labels as a 1-D array-like of of strings of shape (nat,). Typical use is in model conversions, such as Elemental <-> Molpro and not typically something which should be user assigned. See the comments field for general human-consumable text to affix to the Molecule.

	atomic_numbers_ (Array, Optional) – An optional ordered 1-D array-like object of atomic numbers of shape (nat,). Index matches the 0-indexed indices of all other per-atom settings like symbols and real. Values are inferred from the symbols list if not explicitly set.

	mass_numbers_ (Array, Optional) – An optional ordered 1-D array-like object of atomic mass numbers of shape (nat). Index matches the 0-indexed indices of all other per-atom settings like symbols and real. Values are inferred from the most common isotopes of the symbols list if not explicitly set.

	connectivity_ (List[Tuple[int, int, float]], Optional) – The connectivity information between each atom in the symbols array. Each entry in this list is a Tuple of (atom_index_A, atom_index_B, bond_order) where the atom_index matches the 0-indexed indices of all other per-atom settings like symbols and real.

	fragments_ (List[Array], Optional) – An indication of which sets of atoms are fragments within the Molecule. This is a list of shape (nfr) of 1-D array-like objects of arbitrary length. Each entry in the list indicates a new fragment. The index of the list matches the 0-indexed indices of fragment_charges and fragment_multiplicities. The 1-D array-like objects are sets of atom indices indicating the atoms which compose the fragment. The atom indices match the 0-indexed indices of all other per-atom settings like symbols and real.

	fragment_charges_ (List[float], Optional) – The total charge of each fragment in the fragments list of shape (nfr,). The index of this list matches the 0-index indices of fragment list. Will be filled in based on a set of rules if not provided (and fragments are specified).

	fragment_multiplicities_ (List[int], Optional) – The multiplicity of each fragment in the fragments list of shape (nfr,). The index of this list matches the 0-index indices of fragment list. Will be filled in based on a set of rules if not provided (and fragments are specified).

	fix_com (bool, Default: False) – An indicator which prevents pre-processing the Molecule object to translate the Center-of-Mass to (0,0,0) in euclidean coordinate space. Will result in a different geometry than the one provided if False.

	fix_orientation (bool, Default: False) – An indicator which prevents pre-processes the Molecule object to orient via the inertia tensor.Will result in a different geometry than the one provided if False.

	fix_symmetry (str, Optional) – Maximal point group symmetry which geometry should be treated. Lowercase.

	provenance (Provenance, Default: {‘creator’: ‘QCElemental’, ‘version’: ‘v0.13.0’, ‘routine’: ‘qcelemental.models.molecule’}) – The provenance information about how this Molecule (and its attributes) were generated, provided, and manipulated.

	id (Any, Optional) – A unique identifier for this Molecule object. This field exists primarily for Databases (e.g. Fractal’s Server) to track and lookup this specific object and should virtually never need to be manually set.

	extras (Dict[str, Any], Optional) – Extra information to associate with this Molecule.

	
class qcportal.models.OptimizationRecord(**data)

	A OptimizationRecord for all optimization procedure data.

	Parameters

	
	client (Any, Optional) – The client object which the records are fetched from.

	cache (Dict[str, Any], Default: {}) – Object cache from expensive queries. It should be very rare that this needs to be set manually by the user.

	id (ObjectId, Optional) – Id of the object on the database. This is assigned automatically by the database.

	hash_index (str, Optional) – Hash of this object used to detect duplication and collisions in the database.

	procedure (ConstrainedStrValue, Default: optimization) – A fixed string indication this is a record for an “Optimization”.

	program (str) – The quantum chemistry program which carries out the individual quantum chemistry calculations.

	version (int, Default: 1) – Version of the OptimizationRecord Model which this data was created with.

	protocols (OptimizationProtocols, Optional)

	extras (Dict[str, Any], Default: {}) – Extra information to associate with this record.

	stdout (ObjectId, Optional) – The Id of the stdout data stored in the database which was used to generate this record from the various programs which were called in the process.

	stderr (ObjectId, Optional) – The Id of the stderr data stored in the database which was used to generate this record from the various programs which were called in the process.

	error (ObjectId, Optional) – The Id of the error data stored in the database in the event that an error was generated in the process of carrying out the process this record targets. If no errors were raised, this field will be empty.

	task_id (ObjectId, Optional) – Id of the compute task tracked by Fractal in its TaskTable.

	manager_name (str, Optional) – Name of the Queue Manager which generated this record.

	status ({COMPLETE,INCOMPLETE,RUNNING,ERROR}, Default: INCOMPLETE) – The state of a record object. The states which are available are a finite set.

	modified_on (datetime, Optional) – Last time the data this record points to was modified.

	created_on (datetime, Optional) – Time the data this record points to was first created.

	provenance (Provenance, Optional) – Provenance information tied to the creation of this record. This includes things such as every program which was involved in generating the data for this record.

	schema_version (int, Default: 1) – The version number of QCSchema under which this record conforms to.

	initial_molecule (ObjectId) – The Id of the molecule which was passed in as the reference for this Optimization.

	qc_spec (QCSpecification) – The specification of the quantum chemistry calculation to run at each point.

	keywords (Dict[str, Any], Default: {}) – The keyword options which were passed into the Optimization program. Note: These are a dictionary and not a KeywordSet object.

	energies (List[float], Optional) – The ordered list of energies at each step of the Optimization.

	final_molecule (ObjectId, Optional) – The ObjectId of the final, optimized Molecule the Optimization procedure converged to.

	trajectory (List[ObjectId], Optional) – The list of Molecule Id’s the Optimization procedure generated at each step of the optimization.``initial_molecule`` will be the first index, and final_molecule will be the last index.

	
build_schema_input(initial_molecule: Molecule, qc_keywords: Optional[KeywordSet] = None, checks: bool = True) → OptimizationInput

	Creates a OptimizationInput schema.

	
get_final_energy() → float

	The final energy of the geometry optimization.

	Returns

	The optimization molecular energy.

	Return type

	float

	
get_final_molecule() → Molecule

	Returns the optimized molecule

	Returns

	The optimized molecule

	Return type

	Molecule

	
get_initial_molecule() → Molecule

	Returns the initial molecule

	Returns

	The initial molecule

	Return type

	Molecule

	
get_molecular_trajectory() → List[Molecule]

	Returns the Molecule at each gradient evaluation in the trajectory.

	Returns

	A ordered list of Molecules in the trajectory.

	Return type

	List[‘Molecule’]

	
get_trajectory() → List[qcportal.models.records.ResultRecord]

	Returns the Result records for each gradient evaluation in the trajectory.

	Returns

	A ordered list of Result record gradient computations.

	Return type

	List[‘ResultRecord’]

	
show_history(units: str = 'kcal/mol', digits: int = 3, relative: bool = True, return_figure: Optional[bool] = None) → plotly.Figure

	Plots the energy of the trajectory the optimization took.

	Parameters

	
	units (str, optional) – Units to display the trajectory in.

	digits (int, optional) – The number of valid digits to show.

	relative (bool, optional) – If True, all energies are shifted by the lowest energy in the trajectory. Otherwise provides raw energies.

	return_figure (Optional[bool], optional) – If True, return the raw plotly figure. If False, returns a hosted iPlot. If None, return a iPlot display in
Jupyter notebook and a raw plotly figure in all other circumstances.

	Returns

	The requested figure.

	Return type

	plotly.Figure

	
class qcportal.models.QCSpecification

	The quantum chemistry metadata specification for individual computations such as energy, gradient, and Hessians.

	Parameters

	
	driver ({energy,gradient,hessian,properties}) – The type of calculation that is being performed (e.g., energy, gradient, Hessian, …).

	method (str) – The quantum chemistry method to evaluate (e.g., B3LYP, PBE, …).

	basis (str, Optional) – The quantum chemistry basis set to evaluate (e.g., 6-31g, cc-pVDZ, …). Can be None for methods without basis sets.

	keywords (ObjectId, Optional) – The Id of the KeywordSet registered in the database to run this calculation with. This Id must exist in the database.

	protocols (ResultProtocols, Optional) – None

	program (str) – The quantum chemistry program to evaluate the computation with. Not all quantum chemistry programs support all combinations of driver/method/basis.

	
class qcportal.models.GridOptimizationInput

	The input to create a GridOptimization Service with.

	Parameters

	
	program (ConstrainedStrValue, Default: qcfractal) – The name of the source program which initializes the Grid Optimization. This is a constant and is used for provenance information.

	procedure (ConstrainedStrValue, Default: gridoptimization) – The name of the procedure being run. This is a constant and is used for provenance information.

	initial_molecule (Union[ObjectId, Molecule]) – The Molecule to begin the Grid Optimization with. This can either be an existing Molecule in the database (through its ObjectId) or a fully specified Molecule model.

	keywords (GOKeywords) – The keyword options to run the Grid Optimization.

	optimization_spec (OptimizationSpecification) – The specification to run the underlying optimization through at each grid point.

	qc_spec (QCSpecification) – The specification for each of the quantum chemistry calculations run in each geometry optimization.

	
class qcportal.models.GridOptimizationRecord(**data)

	The record of a GridOptimization service result.

A GridOptimization is a type of constrained optimization in which a set of dimension are scanned over. An
is to compute the

	Parameters

	
	client (Any, Optional) – The client object which the records are fetched from.

	cache (Dict[str, Any], Default: {}) – Object cache from expensive queries. It should be very rare that this needs to be set manually by the user.

	id (ObjectId, Optional) – Id of the object on the database. This is assigned automatically by the database.

	hash_index (str, Optional) – Hash of this object used to detect duplication and collisions in the database.

	procedure (ConstrainedStrValue, Default: gridoptimization) – The name of the procedure being run, which is Grid Optimization. This is a constant and is used for provenance information.

	program (ConstrainedStrValue, Default: qcfractal) – The name of the source program which initializes the Grid Optimization. This is a constant and is used for provenance information.

	version (int, Default: 1) – The version number of the Record.

	protocols (Dict[str, Any], Optional) – Protocols that change the data stored in top level fields.

	extras (Dict[str, Any], Default: {}) – Extra information to associate with this record.

	stdout (ObjectId, Optional) – The Id of the stdout data stored in the database which was used to generate this record from the various programs which were called in the process.

	stderr (ObjectId, Optional) – The Id of the stderr data stored in the database which was used to generate this record from the various programs which were called in the process.

	error (ObjectId, Optional) – The Id of the error data stored in the database in the event that an error was generated in the process of carrying out the process this record targets. If no errors were raised, this field will be empty.

	task_id (ObjectId, Optional) – Id of the compute task tracked by Fractal in its TaskTable.

	manager_name (str, Optional) – Name of the Queue Manager which generated this record.

	status ({COMPLETE,INCOMPLETE,RUNNING,ERROR}, Default: INCOMPLETE) – The state of a record object. The states which are available are a finite set.

	modified_on (datetime, Optional) – Last time the data this record points to was modified.

	created_on (datetime, Optional) – Time the data this record points to was first created.

	provenance (Provenance, Optional) – Provenance information tied to the creation of this record. This includes things such as every program which was involved in generating the data for this record.

	initial_molecule (ObjectId) – Id of the initial molecule in the database.

	keywords (GOKeywords) – The keywords for this Grid Optimization.

	optimization_spec (OptimizationSpecification) – The specification of each geometry optimization.

	qc_spec (QCSpecification) – The specification for each of the quantum chemistry computations used by the geometry optimizations.

	starting_molecule (ObjectId) – Id of the molecule in the database begins the grid optimization. This will differ from the initial_molecule if preoptimization is True.

	final_energy_dict (name=’final_energy_dict’ type=Mapping[str, float] required=True) – Map of the final energy from the grid optimization at each grid point.

	grid_optimizations (name=’grid_optimizations’ type=Mapping[str, ObjectId] required=True) – The Id of each optimization at each grid point.

	starting_grid (tuple) – Initial grid point from which the Grid Optimization started. This grid point is the closest in structure to the starting_molecule.

	
static deserialize_key(key: str) → Tuple[int]

	Unpacks a string key to a python object.

	Parameters

	key (str) – The input key

	Returns

	The unpacked key.

	Return type

	Tuple[int]

	
get_final_energies(key: Union[int, str, None] = None) → Dict[str, float]

	Provides the final optimized energies at each grid point.

	Parameters

	key (Union[int, str, None], optional) – Specifies a single entry to pull from.

	Returns

	energy – Returns energies at each grid point in a dictionary or at a
single point if a key is specified.

	Return type

	Dict[str, float]

Examples

>>> grid_optimization_record.get_final_energies()
{(-90,): -148.7641654446243, (180,): -148.76501336993732, (0,): -148.75056290106735, (90,): -148.7641654446148}

>>> grid_optimization_record.get_final_energies((-90,))
-148.7641654446243

	
get_final_molecules(key: Union[int, str, None] = None) → Dict[str, qcelemental.models.molecule.Molecule]

	Provides the final optimized molecules at each grid point.

	Parameters

	key (Union[int, str, None], optional) – Specifies a single entry to pull from.

	Returns

	final_molecules – Returns energies at each grid point in a dictionary or at a
single point if a key is specified.

	Return type

	Dict[str, ‘Molecule’]

Examples

>>> mols = grid_optimization_record.get_final_molecules()
>>> type(mols[(-90,)])
qcelemental.models.molecule.Molecule

>>> type(grid_optimization_record.get_final_molecules((-90,)))
qcelemental.models.molecule.Molecule

	
get_final_results(key: Union[int, Tuple[int, ...], str] = None) → Dict[str, ResultRecord]

	Returns the final opt gradient result records at each grid point.

	Parameters

	key (Union[int, Tuple[int, …], str], optional) – Specifies a single entry to pull from.

	Returns

	final_results – Returns ResultRecord at each grid point in a dictionary or at a
single point if a key is specified.

	Return type

	Dict[str, ‘ResultRecord’]

Examples

>>> mols = grid_optimization_record.get_final_results()
>>> type(mols[(-90,)])
qcfractal.interface.models.records.ResultRecord

>>> type(grid_optimization_record.get_final_results((-90,)))
qcfractal.interface.models.records.ResultRecord

	
get_history(key: Union[int, str, None] = None) → Dict[str, Optimization]

	Pulls the optimization history of the computation.

	Parameters

	key (Union[int, str, None], optional) – Specifies a single entry to pull from.

	Returns

	Return the optimizations in the computed history.

	Return type

	Dict[str, ‘Optimization’]

	
get_scan_dimensions() → Tuple[float, ...]

	Returns the overall dimensions of the scan.

	Returns

	The size of each dimension in the scan.

	Return type

	Tuple[float, ..]

	
get_scan_value(scan_number: Union[str, int, Tuple[int]]) → Tuple[float, ...]

	Obtains the scan parameters at a given grid point.

	Parameters

	scan_number (Union[str, int, Tuple[int]]) – The key of the scan.

	Returns

	Description

	Return type

	Tuple[float, ..]

	
static serialize_key(key: Union[int, Tuple[int]]) → str

	Serializes the key to map to the internal keys.

	Parameters

	key (Union[int, Tuple[int]]) – A integer or list of integers denoting the position in the grid
to find.

	Returns

	The internal key value.

	Return type

	str

	
class qcportal.models.OptimizationSpecification

	Metadata describing a geometry optimization.

	Parameters

	
	program (str) – Optimization program to run the optimization with

	keywords (Dict[str, Any], Optional) – Dictionary of keyword arguments to pass into the program when the program runs. Note that unlike QCSpecification this is a dictionary of keywords, not the Id for a KeywordSet.

	protocols (OptimizationProtocols, Optional) – Protocols regarding the manipulation of a Optimization output data.

	
class qcportal.models.OptimizationProtocols

	Protocols regarding the manipulation of a Optimization output data.

	Parameters

	trajectory ({all,initial_and_final,final,none}, Default: all) – Which gradient evaluations to keep in an optimization trajectory.

	
class qcportal.models.ResultProtocols(*args, **kwargs)

	
	Parameters

	
	wavefunction ({all,orbitals_and_eigenvalues,return_results,none}, Default: none) – Wavefunction to keep from a Result computation.

	stdout (bool, Default: True) – Primary output file to keep from a Result computation

	
class qcportal.models.TorsionDriveInput

	A TorsionDriveRecord Input base class

	Parameters

	
	program (ConstrainedStrValue, Default: torsiondrive) – The name of the program. Fixed to ‘torsiondrive’ since this input model is only valid for it.

	procedure (ConstrainedStrValue, Default: torsiondrive) – The name of the Procedure. Fixed to ‘torsiondrive’ since this input model is only valid for it.

	initial_molecule (List[Union[ObjectId, Molecule]]) – The Molecule(s) to begin the TorsionDrive with. This can either be an existing Molecule in the database (through its ObjectId) or a fully specified Molecule model.

	keywords (TDKeywords) – TorsionDrive-specific input arguments to pass into the TorsionDrive Procedure

	optimization_spec (OptimizationSpecification) – The settings which describe how to conduct the energy optimizations at each step of the torsion scan.

	qc_spec (QCSpecification) – The settings which describe the individual quantum chemistry calculations at each step of the optimization.

	
class qcportal.models.TorsionDriveRecord(**data)

	A interface to the raw JSON data of a TorsionDriveRecord torsion scan run.

	Parameters

	
	client (Any, Optional) – The client object which the records are fetched from.

	cache (Dict[str, Any], Default: {}) – Object cache from expensive queries. It should be very rare that this needs to be set manually by the user.

	id (ObjectId, Optional) – Id of the object on the database. This is assigned automatically by the database.

	hash_index (str, Optional) – Hash of this object used to detect duplication and collisions in the database.

	procedure (ConstrainedStrValue, Default: torsiondrive) – The name of the procedure. Fixed to ‘torsiondrive’ since this is the Record explicit to TorsionDrive.

	program (ConstrainedStrValue, Default: torsiondrive) – The name of the program. Fixed to ‘torsiondrive’ since this is the Record explicit to TorsionDrive.

	version (int, Default: 1) – The version number of the Record.

	protocols (Dict[str, Any], Optional) – Protocols that change the data stored in top level fields.

	extras (Dict[str, Any], Default: {}) – Extra information to associate with this record.

	stdout (ObjectId, Optional) – The Id of the stdout data stored in the database which was used to generate this record from the various programs which were called in the process.

	stderr (ObjectId, Optional) – The Id of the stderr data stored in the database which was used to generate this record from the various programs which were called in the process.

	error (ObjectId, Optional) – The Id of the error data stored in the database in the event that an error was generated in the process of carrying out the process this record targets. If no errors were raised, this field will be empty.

	task_id (ObjectId, Optional) – Id of the compute task tracked by Fractal in its TaskTable.

	manager_name (str, Optional) – Name of the Queue Manager which generated this record.

	status ({COMPLETE,INCOMPLETE,RUNNING,ERROR}, Default: INCOMPLETE) – The state of a record object. The states which are available are a finite set.

	modified_on (datetime, Optional) – Last time the data this record points to was modified.

	created_on (datetime, Optional) – Time the data this record points to was first created.

	provenance (Provenance, Optional) – Provenance information tied to the creation of this record. This includes things such as every program which was involved in generating the data for this record.

	initial_molecule (List[ObjectId]) – Id(s) of the initial molecule(s) in the database.

	keywords (TDKeywords) – The TorsionDrive-specific input arguments used for this operation.

	optimization_spec (OptimizationSpecification) – The settings which describe how the energy optimizations at each step of the torsion scan used for this operation.

	qc_spec (QCSpecification) – The settings which describe how the individual quantum chemistry calculations are handled for this operation.

	final_energy_dict (name=’final_energy_dict’ type=Mapping[str, float] required=True) – The final energy at each angle of the TorsionDrive scan.

	optimization_history (Dict[str, List[qcportal.models.common_models.ObjectId]]) – The map of each angle of the TorsionDrive scan to each optimization computations. Each value of the dict maps to a sequence of ObjectId strings which each point to a single computation in the Database.

	minimum_positions (name=’minimum_positions’ type=Mapping[str, int] required=True) – A map of each TorsionDrive angle to the integer index of that angle’s optimization trajectory which has the minimum-energy of the trajectory.

 Portal Client

Portal Client

The FractalClient is the primary entry point to a FractalServer instance.

We can initialize a FractalClient by pointing it to a server instance. If
you would like to start your own server see the setting up a server (NYI)
section.

>>> import qcportal as ptl
>>> client = ptl.FractalClient("localhost:8888")
>>> client
FractalClient(server='http://localhost:8888/', username='None')

The FractalClient handles all communication to the FractalServer from
the Python API layer. This includes adding new molecules, computations,
collections, and querying for records. A FractalClient constructed without
arguments will automatically connect to the MolSSI QCArchive server.

The FractalClient can also be initialized from a file which is useful so
that addresses and username do not have to be retyped for everytime and
reduces the chance that a username and password could accidentally be added to
a version control system. Creation from file uses the classmethod
FractalClient.from_file(), by default the client searches for a
qcportal_config.yaml file in either the current working directory or from
the canonical ~/.qca folder.

 Add/Query Objects

Add/Query Objects

Molecule, KeywordSet, Collection, and KVStore objects are
always added/queried directly to the server unlike compute objects as this
particular set of structures are not acted upon by the server itself.

Adding Objects

Adding objects to the server uses the client.add_* commands and takes in a
list of objects to add and returns the ObjectId of the object.

>>> helium = ptl.Molecule.from_data("He 0 0 0")
>>> data = client.add_molecules([helium])
['5b882c957b87878925ffaf22']

Adding the same molecule again will not add a new molecule and will always return the same ObjectId:

>>> helium = ptl.Molecule.from_data("He 0 0 0")
>>> data = client.add_molecules([helium, helium])
['5b882c957b87878925ffaf22', '5b882c957b87878925ffaf22']

The order of ObjectId returned is identical to the order of molecules added.

Note

The ObjectId changes and is unique to a particular database.

Querying Objects

Each objects has a set of fields that can be queried to obtain the objects in
addition to their ObjectId. All queries will return a list of objects.

Molecules

As an example, we can use a molecule that comes with QCPortal and adds it to
the database as shown. Please note that the Molecule ID (a ObjectId)
shown below will not be the same as your result and is unique to every
database.

>>> hooh = ptl.Molecule.from_data("""
>>> H 1.8486716127, 1.472346669, 0.644643566
>>> O 1.3127881568, -0.130419379, -0.211892270
>>> O -1.3127927010, 0.133418733, -0.211896415
>>> H -1.8386801669, -1.482348324, 0.644636970
>>> """)
>>> hooh
 Geometry (in Angstrom), charge = 0.0, multiplicity = 1:

 Center X Y Z
 ------------ ----------------- ----------------- -----------------
 H 0.977494197627 0.778135098208 0.428565624355
 O 0.694599115267 -0.068915578683 -0.027163830307
 O -0.694920304666 0.069482110511 -0.026567833892
 H -0.972396644160 -0.787126321701 0.424194864034

>>> data = client.add_molecules([hooh])
>>> data
['5c82c51895d5923b946989c1']

Molecules can either be queried from their Molecule ID or Molecule
hash:

>>> client.query_molecules(molecule_hash=[hooh.get_hash()])[0].id
'5c82c51895d5923b946989c1'

>>> client.query_molecules(id=data)[0].id
'5c82c51895d5923b946989c1'

 Records Querying

Records Querying

Query documents, including projects ideas.

 New Compute Tasks

New Compute Tasks

Add new compute tasks and checking status.

 API

API

Generics

	__init__([address, username, password, verify])

	Initializes a FractalClient instance from an address and verification information.

	from_file([load_path])

	Creates a new FractalClient from file.

	server_information()

	Pull down various data on the connected server.

Add/Query Objects

	query_kvstore(id[, full_return])

	Queries items from the database’s KVStore

	query_molecules([id, molecule_hash, …])

	Queries molecules from the database.

	add_molecules(mol_list[, full_return])

	Adds molecules to the Server.

	query_keywords([id, hash_index, limit, …])

	Obtains KeywordSets from the server using keyword ids.

	add_keywords(keywords[, full_return])

	Adds KeywordSets to the server.

	list_collections([collection_type, aslist, …])

	Lists the available collections currently on the server.

	get_collection(collection_type, name[, …])

	Acquires a given collection from the server.

	add_collection(collection[, overwrite, …])

	Adds a new Collection to the server.

Records Querying

	query_results([id, task_id, program, …])

	Queries ResultRecords from the server.

	query_procedures([id, task_id, procedure, …])

	Queries Procedures from the server.

New Compute Tasks

	add_compute([program, method, basis, …])

	Adds a “single” compute to the server.

	add_procedure(procedure, program, …[, …])

	Adds a “single” Procedure to the server.

	add_service(service[, tag, priority, …])

	Adds a new service to the service queue.

	query_tasks([id, hash_index, program, …])

	Checks the status of Tasks in the Fractal queue.

	query_services([id, procedure_id, …])

	Checks the status of services in the Fractal queue.

Function Definitions

	
qcportal.FractalClient.from_file(load_path: Optional[str] = None) → qcfractal.interface.client.FractalClient

	Creates a new FractalClient from file. If no path is passed in, the
current working directory and ~.qca/ are searched for “qcportal_config.yaml”

	Parameters

	load_path (Optional[str], optional) – Path to find “qcportal_config.yaml”, the filename, or a dictionary containing keys
{“address”, “username”, “password”, “verify”}

	Returns

	A new FractalClient from file.

	Return type

	FractalClient

	
qcportal.FractalClient.server_information(self) → Dict[str, str]

	Pull down various data on the connected server.

	Returns

	Server information.

	Return type

	Dict[str, str]

	
qcportal.FractalClient.query_kvstore(self, id: QueryObjectId, full_return: bool = False) → Dict[str, Any]

	Queries items from the database’s KVStore

	Parameters

	
	id (QueryObjectId) – A list of KVStore id’s

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	A list of found KVStore objects in {“id”: “value”} format

	Return type

	Dict[str, Any]

	
qcportal.FractalClient.query_molecules(self, id: Optional[QueryObjectId] = None, molecule_hash: Optional[QueryStr] = None, molecular_formula: Optional[QueryStr] = None, limit: Optional[int] = None, skip: int = 0, full_return: bool = False) → Union[MoleculeGETResponse, List[Molecule]]

	Queries molecules from the database.

	Parameters

	
	id (QueryObjectId, optional) – Queries the Molecule id field.

	molecule_hash (QueryStr, optional) – Queries the Molecule molecule_hash field.

	molecular_formula (QueryStr, optional) – Queries the Molecule molecular_formula field.

	limit (Optional[int], optional) – The maximum number of Molecules to query

	skip (int, optional) – The number of Molecules to skip in the query, used during pagination

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	A list of found molecules.

	Return type

	List[Molecule]

	
qcportal.FractalClient.add_molecules(self, mol_list: List[Molecule], full_return: bool = False) → List[str]

	Adds molecules to the Server.

	Parameters

	
	mol_list (List[Molecule]) – A list of Molecules to add to the server.

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	A list of Molecule id’s in the sent order, can be None where issues occured.

	Return type

	List[str]

	
qcportal.FractalClient.query_keywords(self, id: Optional[QueryObjectId] = None, *, hash_index: Optional[QueryStr] = None, limit: Optional[int] = None, skip: int = 0, full_return: bool = False) → Union[KeywordGETResponse, List[KeywordSet]]

	Obtains KeywordSets from the server using keyword ids.

	Parameters

	
	id (QueryObjectId, optional) – A list of ids to query.

	hash_index (QueryStr, optional) – The hash index to look up

	limit (Optional[int], optional) – The maximum number of keywords to query

	skip (int, optional) – The number of keywords to skip in the query, used during pagination

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	The requested KeywordSet objects.

	Return type

	List[KeywordSet]

	
qcportal.FractalClient.add_keywords(self, keywords: List[KeywordSet], full_return: bool = False) → List[str]

	Adds KeywordSets to the server.

	Parameters

	
	keywords (List[KeywordSet]) – A list of KeywordSets to add.

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	A list of KeywordSet id’s in the sent order, can be None where issues occured.

	Return type

	List[str]

	
qcportal.FractalClient.list_collections(self, collection_type: Optional[str] = None, aslist: bool = False, group: Optional[str] = 'default', show_hidden: bool = False, tag: Union[List[str], str, None] = None) → pandas.core.frame.DataFrame

	Lists the available collections currently on the server.

	Parameters

	
	collection_type (Optional[str], optional) – If None all collection types will be returned, otherwise only the
specified collection type will be returned

	aslist (bool, optional) – Returns a canonical list rather than a dataframe.

	group (Optional[str], optional) – Show only collections belonging to a specified group.
To explicitly return all collections, set group=None

	show_hidden (bool, optional) – Show collections whose visibility flag is set to False. Default: False.

	tag (Optional[Union[str, List[str]]], optional) – Show collections whose tags match one of the passed tags. By default, collections are not filtered on tag.

	Returns

	A dataframe containing the collection, name, and tagline.

	Return type

	DataFrame

	
qcportal.FractalClient.get_collection(self, collection_type: str, name: str, full_return: bool = False, include: QueryListStr = None, exclude: QueryListStr = None) → Collection

	Acquires a given collection from the server.

	Parameters

	
	collection_type (str) – The collection type to be accessed

	name (str) – The name of the collection to be accessed

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	include (QueryListStr, optional) – Return only these columns.

	exclude (QueryListStr, optional) – Return all but these columns.

	Returns

	A Collection object if the given collection was found otherwise returns None.

	Return type

	Collection

	
qcportal.FractalClient.add_collection(self, collection: Dict[str, Any], overwrite: bool = False, full_return: bool = False) → Union[CollectionGETResponse, List[ObjectId]]

	Adds a new Collection to the server.

	Parameters

	
	collection (Dict[str, Any]) – The full collection data representation.

	overwrite (bool, optional) – Overwrites the collection if it already exists in the database, used for updating collection.

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	The ObjectId’s of the added collection.

	Return type

	List[ObjectId]

	
qcportal.FractalClient.query_results(self, id: Optional[QueryObjectId] = None, task_id: Optional[QueryObjectId] = None, program: Optional[QueryStr] = None, molecule: Optional[QueryObjectId] = None, driver: Optional[QueryStr] = None, method: Optional[QueryStr] = None, basis: Optional[QueryStr] = None, keywords: Optional[QueryObjectId] = None, status: QueryStr = 'COMPLETE', limit: Optional[int] = None, skip: int = 0, include: Optional[QueryListStr] = None, full_return: bool = False) → Union[ResultGETResponse, List[ResultRecord], Dict[str, Any]]

	Queries ResultRecords from the server.

	Parameters

	
	id (QueryObjectId, optional) – Queries the Result id field.

	task_id (QueryObjectId, optional) – Queries the Result task_id field.

	program (QueryStr, optional) – Queries the Result program field.

	molecule (QueryObjectId, optional) – Queries the Result molecule field.

	driver (QueryStr, optional) – Queries the Result driver field.

	method (QueryStr, optional) – Queries the Result method field.

	basis (QueryStr, optional) – Queries the Result basis field.

	keywords (QueryObjectId, optional) – Queries the Result keywords field.

	status (QueryStr, optional) – Queries the Result status field.

	limit (Optional[int], optional) – The maximum number of Results to query

	skip (int, optional) – The number of Results to skip in the query, used during pagination

	include (QueryListStr, optional) – Filters the returned fields, will return a dictionary rather than an object.

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	Returns a List of found RecordResult’s without include, or a
dictionary of results with include.

	Return type

	Union[List[RecordResult], Dict[str, Any]]

	
qcportal.FractalClient.query_procedures(self, id: Optional[QueryObjectId] = None, task_id: Optional[QueryObjectId] = None, procedure: Optional[QueryStr] = None, program: Optional[QueryStr] = None, hash_index: Optional[QueryStr] = None, status: QueryStr = 'COMPLETE', limit: Optional[int] = None, skip: int = 0, include: Optional[QueryListStr] = None, full_return: bool = False) → Union[ProcedureGETResponse, List[Dict[str, Any]]]

	Queries Procedures from the server.

	Parameters

	
	id (QueryObjectId, optional) – Queries the Procedure id field.

	task_id (QueryObjectId, optional) – Queries the Procedure task_id field.

	procedure (QueryStr, optional) – Queries the Procedure procedure field.

	program (QueryStr, optional) – Queries the Procedure program field.

	hash_index (QueryStr, optional) – Queries the Procedure hash_index field.

	status (QueryStr, optional) – Queries the Procedure status field.

	limit (Optional[int], optional) – The maximum number of Procedures to query

	skip (int, optional) – The number of Procedures to skip in the query, used during pagination

	include (QueryListStr, optional) – Filters the returned fields, will return a dictionary rather than an object.

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	Returns a List of found RecordResult’s without include, or a
dictionary of results with include.

	Return type

	Union[List[‘RecordBase’], Dict[str, Any]]

	
qcportal.FractalClient.add_compute(self, program: str = None, method: str = None, basis: Optional[str] = None, driver: str = None, keywords: Optional[ObjectId] = None, molecule: Union[ObjectId, Molecule, List[Union[ObjectId, Molecule]]] = None, *, priority: Optional[str] = None, protocols: Optional[Dict[str, Any]] = None, tag: Optional[str] = None, full_return: bool = False) → ComputeResponse

	Adds a “single” compute to the server.

	Parameters

	
	program (str, optional) – The computational program to execute the result with (e.g., “rdkit”, “psi4”).

	method (str, optional) – The computational method to use (e.g., “B3LYP”, “PBE”)

	basis (Optional[str], optional) – The basis to apply to the computation (e.g., “cc-pVDZ”, “6-31G”)

	driver (str, optional) – The primary result that the compute will aquire {“energy”, “gradient”, “hessian”, “properties”}

	keywords (Optional[‘ObjectId’], optional) – The KeywordSet ObjectId to use with the given compute

	molecule (Union[‘ObjectId’, ‘Molecule’, List[Union[‘ObjectId’, ‘Molecule’]]], optional) – The Molecules or Molecule ObjectId’s to compute with the above methods

	priority (Optional[str], optional) – The priority of the job {“HIGH”, “MEDIUM”, “LOW”}. Default is “MEDIUM”.

	protocols (Optional[Dict[str, Any]], optional) – Protocols for store more or less data per field. Current valid
protocols: {‘wavefunction’}

	tag (Optional[str], optional) – The computational tag to add to your compute, managers can optionally only pull
based off the string tags. These tags are arbitrary, but several examples are to
use “large”, “medium”, “small” to denote the size of the job or “project1”, “project2”
to denote different projects.

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	
	An object that contains the submitted ObjectIds of the new compute. This object has the following fields:
	
	ids: The ObjectId’s of the task in the order of input molecules

	submitted: A list of ObjectId’s that were submitted to the compute queue

	existing: A list of ObjectId’s of tasks already in the database

	Return type

	ComputeResponse

	Raises

	ValueError – Description

	
qcportal.FractalClient.add_procedure(self, procedure: str, program: str, program_options: Dict[str, Any], molecule: Union[ObjectId, Molecule, List[Union[str, Molecule]]], priority: Optional[str] = None, tag: Optional[str] = None, full_return: bool = False) → ComputeResponse

	Adds a “single” Procedure to the server.

	Parameters

	
	procedure (str) – The computational procedure to spawn {“optimization”}

	program (str) – The program to use for the given procedure (e.g., “geomeTRIC”)

	program_options (Dict[str, Any]) – Additional options and specifications for the given procedure.

	molecule (Union[ObjectId, Molecule, List[Union[str, Molecule]]]) – The Molecules or Molecule ObjectId’s to use with the above procedure

	priority (str, optional) – The priority of the job {“HIGH”, “MEDIUM”, “LOW”}. Default is “MEDIUM”.

	tag (str, optional) – The computational tag to add to your procedure, managers can optionally only pull
based off the string tags. These tags are arbitrary, but several examples are to
use “large”, “medium”, “small” to denote the size of the job or “project1”, “project2”
to denote different projects.

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	
	An object that contains the submitted ObjectIds of the new procedure. This object has the following fields:
	
	ids: The ObjectId’s of the task in the order of input molecules

	submitted: A list of ObjectId’s that were submitted to the compute queue

	existing: A list of ObjectId’s of tasks already in the database

	Return type

	ComputeResponse

	
qcportal.FractalClient.query_tasks(self, id: Optional[QueryObjectId] = None, hash_index: Optional[QueryStr] = None, program: Optional[QueryStr] = None, status: Optional[QueryStr] = None, base_result: Optional[QueryStr] = None, tag: Optional[QueryStr] = None, manager: Optional[QueryStr] = None, limit: Optional[int] = None, skip: int = 0, include: Optional[QueryListStr] = None, full_return: bool = False) → Union[TaskQueueGETResponse, List[TaskRecord], List[Dict[str, Any]]]

	Checks the status of Tasks in the Fractal queue.

	Parameters

	
	id (QueryObjectId, optional) – Queries the Tasks id field.

	hash_index (QueryStr, optional) – Queries the Tasks hash_index field.

	program (QueryStr, optional) – Queries the Tasks program field.

	status (QueryStr, optional) – Queries the Tasks status field.

	base_result (QueryStr, optional) – Queries the Tasks base_result field.

	tag (QueryStr, optional) – Queries the Tasks tag field.

	manager (QueryStr, optional) – Queries the Tasks manager field.

	limit (Optional[int], optional) – The maximum number of Tasks to query

	skip (int, optional) – The number of Tasks to skip in the query, used during pagination

	include (QueryListStr, optional) – Filters the returned fields, will return a dictionary rather than an object.

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	A dictionary of each match that contains the current status
and, if an error has occurred, the error message.

	Return type

	List[Dict[str, Any]]

Examples

>>> client.query_tasks(id="5bd35af47b878715165f8225",include=["status"])
[{"status": "WAITING"}]

	
qcportal.FractalClient.add_service(self, service: Union[List[GridOptimizationInput], List[TorsionDriveInput]], tag: Optional[str] = None, priority: Optional[str] = None, full_return: bool = False) → ComputeResponse

	Adds a new service to the service queue.

	Parameters

	
	service (Union[GridOptimizationInput, TorsionDriveInput]) – An available service input

	tag (Optional[str], optional) – The compute tag to add the service under.

	priority (Optional[str], optional) – The priority of the job within the compute queue.

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	
	An object that contains the submitted ObjectIds of the new service. This object has the following fields:
	
	ids: The ObjectId’s of the task in the order of input molecules

	submitted: A list of ObjectId’s that were submitted to the compute queue

	existing: A list of ObjectId’s of tasks already in the database

	Return type

	ComputeResponse

	
qcportal.FractalClient.query_services(self, id: Optional[QueryObjectId] = None, procedure_id: Optional[QueryObjectId] = None, hash_index: Optional[QueryStr] = None, status: Optional[QueryStr] = None, limit: Optional[int] = None, skip: int = 0, full_return: bool = False) → Union[ServiceQueueGETResponse, List[Dict[str, Any]]]

	Checks the status of services in the Fractal queue.

	Parameters

	
	id (QueryObjectId, optional) – Queries the Services id field.

	procedure_id (QueryObjectId, optional) – Queries the Services procedure_id field, or the ObjectId of the procedure associated with the service.

	hash_index (QueryStr, optional) – Queries the Services procedure_id field.

	status (QueryStr, optional) – Queries the Services status field.

	limit (Optional[int], optional) – The maximum number of Services to query

	skip (int, optional) – The number of Services to skip in the query, used during pagination

	full_return (bool, optional) – Returns the full server response if True that contains additional metadata.

	Returns

	A dictionary of each match that contains the current status
and, if an error has occurred, the error message.

	Return type

	List[Dict[str, Any]]

 Glossary

Glossary

	DB Index
	A DB Index (or Database Index) is a commonly queried field used to speed up
searches in a DB Table.

	DB Socket
	A DB Socket (or Database Socket) is the interface layer between standard
Python queries and raw SQL or MongoDB query language.

	DB Table
	A set of data inside the Database which has a common ObjectId. The table
name follows SQL conventions which is also known as a collection in MongoDB.

	Hash Index
	A index that hashes the information contained in the object
in a reproducible manner. This hash index is only used to find duplicates
and should not be relied upon as it may change in the future.

	Molecule
	A unique 3D representation of a molecule. Any changes to the protonation
state, multiplicity, charge, fragments, coordinates, connectivity, isotope, or
ghost atoms represent a change in the molecule.

	ObjectId
	A ObjectId (or Database ID) is a unique ID for a given row (a document or
entry) in the database that uniquely defines that particular row in a
DB Table. These rows are automatically generated and will be
different for every database, but outlines ways to reference other rows
in the database quickly. A ObjectId is unique to a DB Table.

	Procedures
	On-node computations, these can either be a single computation (energy,
gradient, property, etc.) or a series of calculations such as a geometry
optimization.

	Queue Adapter
	The interface between QCFractal’s internal queue representation and other
queueing systems such as Dask or Fireworks.

	Record
	A document that contains all results (or links) of a given computation.

	Services
	Iterative workflows where the required computations are distributed via
the queue and then are processed on the server to acquire the next iteration of
calculations.

 REST API

REST API

The items in this list document the REST API calls which can be made against the server,
this includes both the Body and the Responses for the various GET, POST, and PUT calls.

The entries are organized such that the API is presented first, separated by objects.
The last group of entries are common models which are parts of the API Bodies and
Responses (like Metadata), but occur many times in the normal calls.

KV Store

	
class qcportal.models.rest_models.KVStoreGETBody

	
	Parameters

	
	meta (EmptyMeta, Default: {}) – There is no metadata accepted, so an empty metadata is sent for completion.

	data (Data) – Data of the KV Get field: consists of a dict for Id of the Key/Value object to fetch.

	
class qcportal.models.rest_models.KVStoreGETResponse

	
	Parameters

	
	meta (ResponseGETMeta) – Standard Fractal Server response metadata for GET/fetch type requests.

	data (Dict[str, Any]) – The entries of Key/Value object requested.

Molecule

	
class qcportal.models.rest_models.MoleculeGETBody

	
	Parameters

	
	meta (QueryMeta, Optional) – Standard Fractal Server metadata for Database queries containing pagination information

	data (Data) – Data fields for a Molecule query.

	
class qcportal.models.rest_models.MoleculeGETResponse

	
	Parameters

	
	meta (ResponseGETMeta) – Standard Fractal Server response metadata for GET/fetch type requests.

	data (Molecule) – The List of Molecule objects found by the query.

	
class qcportal.models.rest_models.MoleculePOSTBody

	
	Parameters

	
	meta (EmptyMeta, Default: {}) – There is no metadata accepted, so an empty metadata is sent for completion.

	data (Molecule) – A list of Molecule objects to add to the Database.

	
class qcportal.models.rest_models.MoleculePOSTResponse

	
	Parameters

	
	meta (ResponsePOSTMeta) – Standard Fractal Server response metadata for POST/add type requests.

	data (List[ObjectId]) – A list of Id’s assigned to the Molecule objects passed in which serves as a unique identifier in the database. If the Molecule was already in the database, then the Id returned is its existing Id (entries are not duplicated).

Keywords

	
class qcportal.models.rest_models.KeywordGETBody

	
	Parameters

	
	meta (QueryMeta, Optional) – Standard Fractal Server metadata for Database queries containing pagination information

	data (Data) – The formal query for a Keyword fetch, contains id or hash_index for the object to fetch.

	
class qcportal.models.rest_models.KeywordGETResponse

	
	Parameters

	
	meta (ResponseGETMeta) – Standard Fractal Server response metadata for GET/fetch type requests.

	data (KeywordSet) – The KeywordSet found from in the database based on the query.

	
class qcportal.models.rest_models.KeywordPOSTBody

	
	Parameters

	
	meta (EmptyMeta, Default: {}) – There is no metadata with this, so an empty metadata is sent for completion.

	data (KeywordSet) – The list of KeywordSet objects to add to the database.

	
class qcportal.models.rest_models.KeywordPOSTResponse

	
	Parameters

	
	data (List[ObjectId]) – The Ids assigned to the added KeywordSet objects. In the event of duplicates, the Id will be the one already found in the database.

	meta (ResponsePOSTMeta) – Standard Fractal Server response metadata for POST/add type requests.

Collections

	
class qcportal.models.rest_models.CollectionGETBody

	
	Parameters

	
	meta (QueryFilter, Optional) – Additional metadata to make with the query. Collections can only have an include/exclude key in its meta and therefore does not follow the standard GET metadata model.

	data (Data) – Information about the Collection to search the database with.

	
class qcportal.models.rest_models.CollectionGETResponse

	
	Parameters

	
	meta (ResponseGETMeta) – Standard Fractal Server response metadata for GET/fetch type requests.

	data (List[Dict[str, Union[Any, NoneType]]]) – The Collection objects returned by the server based on the query.

	
class qcportal.models.rest_models.CollectionPOSTBody

	
	Parameters

	
	meta (Meta, Optional) – Metadata to specify how the Database should handle adding this Collection if it already exists. Metadata model for adding Collections can only accept overwrite as a key to choose to update existing Collections or not.

	data (Data) – The data associated with this Collection to add to the database.

	
class qcportal.models.rest_models.CollectionPOSTResponse

	
	Parameters

	
	data (str) – The Id of the Collection uniquely pointing to it in the Database. If the Collection was not added (e.g. overwrite=False for existing Collection), then a None is returned.

	meta (ResponsePOSTMeta) – Standard Fractal Server response metadata for POST/add type requests.

Result

	
class qcportal.models.rest_models.ResultGETBody

	
	Parameters

	
	meta (QueryMetaFilter, Optional) – Fractal Server metadata for Database queries allowing for filtering and pagination

	data (Data) – The keys with data to search the database on for individual quantum chemistry computations.

	
class qcportal.models.rest_models.ResultGETResponse

	
	Parameters

	
	meta (ResponseGETMeta) – Standard Fractal Server response metadata for GET/fetch type requests.

	data (Union[ResultRecord, List[Dict[str, Any]]]) – Results found from the query. This is a list of ResultRecord in most cases, however, if a projection was specified in the GET request, then a dict is returned with mappings based on the projection.

Procedures

	
class qcportal.models.rest_models.ProcedureGETBody

	
	Parameters

	
	meta (QueryMetaFilter, Optional) – Fractal Server metadata for Database queries allowing for filtering and pagination

	data (Data) – The keys with data to search the database on for Procedures.

	
class qcportal.models.rest_models.ProcedureGETResponse

	
	Parameters

	
	meta (ResponseGETMeta) – Standard Fractal Server response metadata for GET/fetch type requests.

	data (List[Dict[str, Union[Any, NoneType]]]) – The list of Procedure specs found based on the query.

Task Queue

	
class qcportal.models.rest_models.TaskQueueGETBody

	
	Parameters

	
	meta (QueryMetaFilter, Optional) – Fractal Server metadata for Database queries allowing for filtering and pagination

	data (Data) – The keys with data to search the database on for Tasks.

	
class qcportal.models.rest_models.TaskQueueGETResponse

	
	Parameters

	
	meta (ResponseGETMeta) – Standard Fractal Server response metadata for GET/fetch type requests.

	data (Union[TaskRecord, List[Dict[str, Any]]]) – Tasks found from the query. This is a list of TaskRecord in most cases, however, if a projection was specified in the GET request, then a dict is returned with mappings based on the projection.

	
class qcportal.models.rest_models.TaskQueuePOSTBody

	
	Parameters

	
	meta (Meta) – The additional specification information for the Task to add to the Database.

	data (List[Union[ObjectId, Molecule]]) – The list of either Molecule objects or Molecule Id’s (those already in the database) to submit as part of this Task.

	
class qcportal.models.rest_models.TaskQueuePOSTResponse

	
	Parameters

	
	meta (ResponsePOSTMeta) – Standard Fractal Server response metadata for POST/add type requests.

	data (ComputeResponse) – Data returned from the server from adding a Task.

	
class qcportal.models.rest_models.TaskQueuePUTBody

	
	Parameters

	
	meta (Meta) – The instructions to pass to the target Task from data.

	data (Data) – The information which contains the Task target in the database.

	
class qcportal.models.rest_models.TaskQueuePUTResponse

	
	Parameters

	
	meta (ResponseMeta) – Standard Fractal Server response metadata

	data (Data) – Information returned from attempting updates of Tasks.

Service Queue

	
class qcportal.models.rest_models.ServiceQueueGETBody

	
	Parameters

	
	meta (QueryMeta, Optional) – Standard Fractal Server metadata for Database queries containing pagination information

	data (Data) – The keys with data to search the database on for Services.

	
class qcportal.models.rest_models.ServiceQueueGETResponse

	
	Parameters

	
	meta (ResponseGETMeta) – Standard Fractal Server response metadata for GET/fetch type requests.

	data (List[Dict[str, Union[Any, NoneType]]]) – The return of Services found in the database mapping their Ids to the Service spec.

	
class qcportal.models.rest_models.ServiceQueuePOSTBody

	
	Parameters

	
	meta (Meta) – Metadata information for the Service for the Tag and Priority of Tasks this Service will create.

	data (List[Union[TorsionDriveInput, GridOptimizationInput]]) – A list the specification for Procedures this Service will manage and generate Tasks for.

	
class qcportal.models.rest_models.ServiceQueuePOSTResponse

	
	Parameters

	
	meta (ResponsePOSTMeta) – Standard Fractal Server response metadata for POST/add type requests.

	data (ComputeResponse) – Data returned from the server from adding a Service.

	
class qcportal.models.rest_models.ServiceQueuePUTBody

	
	Parameters

	
	meta (Meta) – The instructions to pass to the targeted Service.

	data (Data) – The information which contains the Service target in the database.

	
class qcportal.models.rest_models.ServiceQueuePUTResponse

	
	Parameters

	
	meta (ResponseMeta) – Standard Fractal Server response metadata

	data (Data) – Information returned from attempting updates of Services.

Queue Manager

	
class qcportal.models.rest_models.QueueManagerGETBody

	
	Parameters

	
	meta (QueueManagerMeta) – Validation and identification Meta information for the Queue Manager’s communication with the Fractal Server.

	data (Data) – A model of Task request data for the Queue Manager to fetch. Accepts limit as the maximum number of tasks to pull.

	
class qcportal.models.rest_models.QueueManagerGETResponse

	
	Parameters

	
	meta (ResponseGETMeta) – Standard Fractal Server response metadata for GET/fetch type requests.

	data (List[Dict[str, Union[Any, NoneType]]]) – A list of tasks retrieved from the server to compute.

	
class qcportal.models.rest_models.QueueManagerPOSTBody

	
	Parameters

	
	meta (QueueManagerMeta) – Validation and identification Meta information for the Queue Manager’s communication with the Fractal Server.

	data (Dict[ObjectId, Any]) – A Dictionary of tasks to return to the server.

	
class qcportal.models.rest_models.QueueManagerPOSTResponse

	
	Parameters

	
	meta (ResponsePOSTMeta) – Standard Fractal Server response metadata for POST/add type requests.

	data (bool) – A True/False return on if the server accepted the returned tasks.

	
class qcportal.models.rest_models.QueueManagerPUTBody

	
	Parameters

	
	meta (QueueManagerMeta) – Validation and identification Meta information for the Queue Manager’s communication with the Fractal Server.

	data (Data) – The update action which the Queue Manager requests the Server take with respect to how the Queue Manager is tracked.

	
class qcportal.models.rest_models.QueueManagerPUTResponse

	
	Parameters

	
	meta (Dict[str, Any], Default: {}) – There is no metadata accepted, so an empty metadata is sent for completion.

	data (Union[name=’data_Dict[str, int]’ type=Mapping[str, int] required=True, bool]) – The response from the Server attempting to update the Queue Manager’s server-side status. Response type is a function of the operation made from the PUT request.

Common REST Components

These are NOT complete Body or Responses to the REST API, but common fragments which
make up things like the Metadata or the Data fields.

	
class qcportal.models.rest_models.EmptyMeta

	There is no metadata accepted, so an empty metadata is sent for completion.

	
class qcportal.models.rest_models.ResponseMeta

	Standard Fractal Server response metadata

	Parameters

	
	errors (List[Tuple[str, str]]) – A list of error pairs in the form of [(error type, error message), …]

	success (bool) – Indicates if the passed information was successful in its duties. This is contextual to the data being passed in.

	error_description (Union[str, bool]) – Details about the error if success is False, otherwise this is False in the event of no errors.

	
class qcportal.models.rest_models.ResponseGETMeta

	Standard Fractal Server response metadata for GET/fetch type requests.

	Parameters

	
	errors (List[Tuple[str, str]]) – A list of error pairs in the form of [(error type, error message), …]

	success (bool) – Indicates if the passed information was successful in its duties. This is contextual to the data being passed in.

	error_description (Union[str, bool]) – Details about the error if success is False, otherwise this is False in the event of no errors.

	missing (List[str]) – The Id’s of the objects which were not found in the database.

	n_found (int) – The number of entries which were already found in the database from the set which was provided.

	
class qcportal.models.rest_models.ResponsePOSTMeta

	Standard Fractal Server response metadata for POST/add type requests.

	Parameters

	
	errors (List[Tuple[str, str]]) – A list of error pairs in the form of [(error type, error message), …]

	success (bool) – Indicates if the passed information was successful in its duties. This is contextual to the data being passed in.

	error_description (Union[str, bool]) – Details about the error if success is False, otherwise this is False in the event of no errors.

	n_inserted (int) – The number of new objects amongst the inputs which did not exist already, and are now in the database.

	duplicates (Union[List[str], List[Tuple[str, str]]]) – The Ids of the objects which already exist in the database amongst the set which were passed in.

	validation_errors (List[str]) – All errors with validating submitted objects will be documented here.

	
class qcportal.models.rest_models.QueryMeta

	Standard Fractal Server metadata for Database queries containing pagination information

	Parameters

	
	limit (int, Optional) – Limit to the number of objects which can be returned with this query.

	skip (int, Default: 0) – The number of records to skip on the query.

	
class qcportal.models.rest_models.QueueManagerMeta

	Validation and identification Meta information for the Queue Manager’s communication with the Fractal Server.

	Parameters

	
	cluster (str) – The Name of the Cluster the Queue Manager is running on.

	hostname (str) – Hostname of the machine the Queue Manager is running on.

	uuid (str) – A UUID assigned to the QueueManager to uniquely identify it.

	username (str, Optional) – Fractal Username the Manager is being executed under.

	qcengine_version (str) – Version of QCEngine which the Manager has access to.

	manager_version (str) – Version of the QueueManager (Fractal) which is getting and returning Jobs.

	programs (List[str]) – A list of programs which the QueueManager, and thus QCEngine, has access to. Affects which Tasks the Manager can pull.

	procedures (List[str]) – A list of procedures which the QueueManager has access to. Affects which Tasks the Manager can pull.

	tag (Union[List[str], str], Optional) – Optional queue tag to pull Tasks from. If None, tasks are pulled from all tags. If a list of tags is provided, tasks are pulled in order of tags. (This does not guarantee tasks will be executed in that order, however.)

	total_worker_walltime (float, Optional) – The total worker walltime in core-hours.

	total_task_walltime (float, Optional) – The total task walltime in core-hours.

	active_tasks (int, Optional) – The total number of active running tasks.

	active_cores (int, Optional) – The total number of active cores.

	active_memory (float, Optional) – The total amount of active memory in GB.

 Changelog

Changelog

0.13.0 / 2020-01-15

New Features

Enhancements

	(GH#507 [https://github.com/MolSSI/QCPortal/pull/507]) Automatically adds collection molecules in chunks if more than the current limit needs to be submitted.

	(GH#515 [https://github.com/MolSSI/QCPortal/pull/515]) Conda environments now correspond to docker images in all deployed cases.

	(GH#524 [https://github.com/MolSSI/QCPortal/pull/524]) The delete_collection function was added to qcportal.FractalClient.

	(GH#535 [https://github.com/MolSSI/QCPortal/pull/535]) Allows dftd3 to be computed for all stoichiometries rather than just defaults.

Bug Fixes

	(GH#506 [https://github.com/MolSSI/QCPortal/pull/506]) Fixes repeated visualize calls where previously the visualize call would corrupt local state.

	(GH#522 [https://github.com/MolSSI/QCPortal/pull/522]) Fixes a bug where ProcedureDataset.status() failed for specifications where only a subset was computed.

	(GH#525 [https://github.com/MolSSI/QCPortal/pull/525]) This PR fixes ENTRYPOINT of the qcarchive_worker_openff worker. (Conda and Docker are not friends.)

	(GH#543 [https://github.com/MolSSI/QCPortal/pull/543]) Fixes a bug where qcfractal-server “start” before an “upgrade” prevented the “upgrade” command from correctly running.

	(GH#545 [https://github.com/MolSSI/QCPortal/pull/545]) Fixed an issue in Dataset.get_records() that could occur when the optional arguments keywords and basis were not provided.

0.12.2 / 2019-12-07

Enhancements

	(GH#477 [https://github.com/MolSSI/QCPortal/pull/477]) Removes 0.12.x xfails when connecting to the server.

	(GH#481 [https://github.com/MolSSI/QCPortal/pull/481]) Expands Parsl Manager Adapter to include ALCF requirements.

	(GH#483 [https://github.com/MolSSI/QCPortal/pull/483]) Dataset Views are now much faster to load in HDF5.

	(GH#488 [https://github.com/MolSSI/QCPortal/pull/488]) Allows gzipped dataset views.

	(GH#490 [https://github.com/MolSSI/QCPortal/pull/490]) Computes checksums on gzipped dataset views.

Bug Fixes

	(GH#486 [https://github.com/MolSSI/QCPortal/pull/486]) Fixes pydantic __repr__ issues after update.

	(GH#492 [https://github.com/MolSSI/QCPortal/pull/492]) Fixes error where ReactionDataset didn’t allow a minimum number of n-body expansion to be added.

	(GH#493 [https://github.com/MolSSI/QCPortal/pull/493]) Fixes an issue with ReactionDataset.get_molecules when a subset is present.

	(GH#494 [https://github.com/MolSSI/QCPortal/pull/494]) Fixes an issue where queries with limit=0 erroneously returned all results.

	(GH#496 [https://github.com/MolSSI/QCPortal/pull/496]) TorsionDrive tests now avoid 90 degree angles with RDKit to avoid some linear issues in the forcefield and make them more stable.

	(GH#497 [https://github.com/MolSSI/QCPortal/pull/497]) TorsionDrive.get_history now works for extremely large (1000+) optimizations in the procedure.

0.12.1 / 2019-11-08

Enhancements

	(GH#472 [https://github.com/MolSSI/QCPortal/pull/472]) Update to GitHub ISSUE templates.

	(GH#473 [https://github.com/MolSSI/QCPortal/pull/473]) Server /information endpoint now contains the number of records for molecules, results, procedures, and collections.

	(GH#474 [https://github.com/MolSSI/QCPortal/pull/474]) Dataset Views can now be of arbitrary shape.

	(GH#475 [https://github.com/MolSSI/QCPortal/pull/475]) Changes the default formatting of the codebase to Black.

Bug Fixes

	(GH#470 [https://github.com/MolSSI/QCPortal/pull/470]) Dataset fix for non-energy units.

0.12.0 / 2019-10-01

New Features

	(GH#433 [https://github.com/MolSSI/QCPortal/pull/433]) Dataset and ReactionDataset (interface.collections) now have a download` method which
downloads a frozen view of the dataset. This view is used to speed up calls to get_values, get_molecules,
get_entries, and list_values.

	(GH#440 [https://github.com/MolSSI/QCPortal/pull/440]) Wavefunctions can now be stored in the database using Result protocols.

Enhancements

	(GH#429 [https://github.com/MolSSI/QCPortal/pull/429]) Enables protocols for OptimizationDataset collections.

	(GH#430 [https://github.com/MolSSI/QCPortal/pull/430]) Adds additional QCPortal type hints.

	(GH#433 [https://github.com/MolSSI/QCPortal/pull/433], GH#443 [https://github.com/MolSSI/QCPortal/pull/443]) Dataset and ReactionDataset (interface.collections) are now faster for calls to calls to get_values, get_molecules,
get_entries, and list_values for large datasets if the server is configured to use frozen views. See “Server-side Dataset Views” documentation. Subsets
may be passed to get_values, get_molecules, and get_entries

	(GH#447 [https://github.com/MolSSI/QCPortal/pull/447]) Enables the creation of plaintext (xyz and csv) output from Dataset Collections.

	(GH#458 [https://github.com/MolSSI/QCPortal/pull/458]) Collections now have a metadata field.

	(GH#462 [https://github.com/MolSSI/QCPortal/pull/462]) Dataset downloads now have a TQDM progress bar.

	(GH#463 [https://github.com/MolSSI/QCPortal/pull/463]) FractalClient.list_collections by default only returns collections whose visibility flag is set to true,
and whose group is “default”. This change was made to filter out in-progress, intermediate, and specialized collections.

Bug Fixes

	(GH#424 [https://github.com/MolSSI/QCPortal/pull/424]) Fixes a ReactionDataset.visualize bug with groupby='D3'.

	(GH#456 [https://github.com/MolSSI/QCPortal/pull/456], GH#452 [https://github.com/MolSSI/QCPortal/pull/452]) Queries that project hybrid properties should now work as expected.

Deprecated Features

	(GH#426 [https://github.com/MolSSI/QCPortal/pull/426]) In Dataset and ReactionDataset (interface.collections),
the previously deprecated functions query, get_history, and list_history have been removed.

0.11.0 / 2019-10-01

New Features

	(GH#420 [https://github.com/MolSSI/QCPortal/pull/420]) Pre-storage data handling through Elemental’s Protocols feature are now present in Fractal. Although
only optimization protocols are implemented functionally, the database side has been upgraded to store protocol
settings.

Enhancements

	(GH#385 [https://github.com/MolSSI/QCPortal/pull/385], GH#404 [https://github.com/MolSSI/QCPortal/pull/404], GH#411 [https://github.com/MolSSI/QCPortal/pull/411]) Dataset and ReactionDataset have five new functions for accessing data.
get_values returns the canonical headline value for a dataset (e.g. the interaction energy for S22) in data
columns with caching, both for result-backed values and contributed values. This function replaces the now-deprecated
get_history and get_contributed_values. list_values returns the list of data columns available from
get_values. This function replaces the now-deprecated list_history and list_contributed_values.
get_records either returns ResultRecord or a projection. For the case of ReactionDataset, the results are
broken down into component calculations. The function replaces the now-deprecated query.
list_records returns the list of data columns available from get_records.
get_molecules returns the Molecule associated with a dataset.

	(GH#393 [https://github.com/MolSSI/QCPortal/pull/393]) A new feature added to Client to be able to have more custom and fast queries, the custom_query
method.
Those fast queries are now used in torsiondrive.get_final_molecules and torsiondrive.get_final_results. More
Advanced queries will be added.

	(GH#394 [https://github.com/MolSSI/QCPortal/pull/394]) Adds tag and manager selector fields to client.query_tasks.
This is helpful for managing jobs in the queue and detecting failures.

	(GH#400 [https://github.com/MolSSI/QCPortal/pull/400], GH#401 [https://github.com/MolSSI/QCPortal/pull/401], GH#410 [https://github.com/MolSSI/QCPortal/pull/410]) Adds Dockerfiles corresponding to builds on
Docker Hub [https://cloud.docker.com/u/molssi/repository/list].

	(GH#406 [https://github.com/MolSSI/QCPortal/pull/406]) The Dataset collection’s primary indices (database level) have been updated to reflect its new
understanding.

Bug Fixes

	(GH#396 [https://github.com/MolSSI/QCPortal/pull/396]) Fixed a bug in internal Dataset function which caused ComputeResponse to be truncated when the
number of calculations is larger than the query_limit.

	(GH#403 [https://github.com/MolSSI/QCPortal/pull/403]) Fixed Dataset.get_values for any method which involved DFTD3.

	(GH#409 [https://github.com/MolSSI/QCPortal/pull/409]) Fixed a compatibility bug in specific version of Intel-OpenMP by skipping version
2019.5-281.

Documentation Improvements

	(GH#399 [https://github.com/MolSSI/QCPortal/pull/399]) A Kubernetes quickstart guide has been added.

0.10.0 / 2019-08-26

Note

Stable Beta Release

This release marks Fractal’s official Stable Beta Release. This means that future, non-backwards compatible
changes to the API will result in depreciation warnings.

Enhancements

	(GH#356 [https://github.com/MolSSI/QCPortal/pull/356]) Collections’ database representations have been improved to better support future upgrade paths.

	(GH#375 [https://github.com/MolSSI/QCPortal/pull/375]) Dataset Records are now copied alongside the Collections.

	(GH#377 [https://github.com/MolSSI/QCPortal/pull/377]) The testing suite from Fractal now exposes as a PyTest entry-point when Fractal is installed so
that tests can be run from anywhere with the --pyargs qcfractal flag of pytest.

	(GH#384 [https://github.com/MolSSI/QCPortal/pull/384]) “Dataset Records” and “Reaction Dataset Records” have been renamed to “Dataset Entry” and “Reaction
Dataset Entry” respectively.

	(GH#387 [https://github.com/MolSSI/QCPortal/pull/387]) The auto-documentation tech introduced in GH#321 [https://github.com/MolSSI/QCPortal/pull/321] has been replaced by the improved implementation in
Elemental.

Bug Fixes

	(GH#388 [https://github.com/MolSSI/QCPortal/pull/388]) Queue Manager shutdowns will now signal to reset any running tasks they own.

Documentation Improvements

	(GH#372 [https://github.com/MolSSI/QCPortal/pull/372], GH#376 [https://github.com/MolSSI/QCPortal/pull/376]) Installation instructions have been updated and typo-corrected such that they are accurate
now for both Conda and PyPi.

0.9.0 / 2019-08-16

New Features

	(GH#354 [https://github.com/MolSSI/QCPortal/pull/354]) Fractal now takes advantage of Elemental’s new Msgpack serialization option for Models. Serialization
defaults to msgpack when available (conda install msgpack-python [-c conda-forge]), falling back to JSON
otherwise. This results in substantial speedups for both serialization and deserialization actions and should be a
transparent replacement for users within Fractal, Engine, and Elemental themselves.

	(GH#358 [https://github.com/MolSSI/QCPortal/pull/358]) Fractal Server now exposes a CLI for user/permissions management through the qcfractal-server user
command. See the full documentation for details [https://qcfractal.readthedocs.io/en/latest/server_user.html].

	(GH#358 [https://github.com/MolSSI/QCPortal/pull/358]) Fractal Server’s CLI now supports user manipulations through the qcfractal-server user subcommand.
This allows server administrators to control users and their access without directly interacting with the storage
socket.

Enhancements

	(GH#330 [https://github.com/MolSSI/QCPortal/pull/330], GH#340 [https://github.com/MolSSI/QCPortal/pull/340], GH#348 [https://github.com/MolSSI/QCPortal/pull/348], GH#349 [https://github.com/MolSSI/QCPortal/pull/349]) Many Pydantic based Models attributes are now documented and in an
on-the-fly manner derived from the Pydantic Schema of those attributes.

	(GH#338 [https://github.com/MolSSI/QCPortal/pull/338]) The Queue Manager which generated a Result is now stored in the Result records themselves.

	(GH#341 [https://github.com/MolSSI/QCPortal/pull/341]) Skeletal Queue Manager YAML files can now be generated through the --skel or --skeleton CLI flag
on qcfractal-manager

	(GH#361 [https://github.com/MolSSI/QCPortal/pull/361]) Staged DB’s in Fractal copy Alembic alongside them.

	(GH#363 [https://github.com/MolSSI/QCPortal/pull/363]) A new REST API hook for services has been added so Clients can manage Services.

Bug Fixes

	(GH#359 [https://github.com/MolSSI/QCPortal/pull/359]) A FutureWarning from Pandas has been addressed before it becomes an error.

0.8.1 / 2019-07-30

Bug Fixes

	(GH#335 [https://github.com/MolSSI/QCPortal/pull/335]) Dataset’s get_history function is fixed by allowing the ability to force a new query even if one has
already been cached.

0.8.0 / 2019-07-25

Breaking Changes

Warning

PostgreSQL is now the only supported database backend.

Fractal has officially dropped support for MongoDB in favor of PostgreSQL as our
database backend. Although MongoDB served the start of Fractal well, our database design
as evolved since then and will be better served by PostgreSQL.

New Features

	(GH#307 [https://github.com/MolSSI/QCPortal/pull/307], GH#319 [https://github.com/MolSSI/QCPortal/pull/319] GH#321 [https://github.com/MolSSI/QCPortal/pull/321]) Fractal’s Server CLI has been overhauled to more intuitively and intelligently
control Server creation, startup, configuration, and upgrade paths. This is mainly reflected in a Fractal Server
config file, a config folder
(default location ~/.qca, and sub-commands init, start, config, and upgrade of the
qcfractal-server (command) CLI.
See the full documentation for details [https://qcfractal.readthedocs.io/en/latest/server_config.html]

	(GH#323 [https://github.com/MolSSI/QCPortal/pull/323]) First implementation of the GridOptimizationDataset for collecting Grid Optimization calculations.
Not yet fully featured, but operational for users to start working with.

Enhancements

	(GH#291 [https://github.com/MolSSI/QCPortal/pull/291]) Tests have been formally added for the Queue Manager to reduce bugs in the future. They cannot test on
actual Schedulers yet, but its a step in the right direction.

	(GH#295 [https://github.com/MolSSI/QCPortal/pull/295]) Quality of life improvement for Mangers which by default will be less noisy about heartbeats and trigger
a heartbeat less frequently. Both options can still be controlled through verbosity and a config setting.

	(GH#296 [https://github.com/MolSSI/QCPortal/pull/296]) Services are now prioritized by the date they are created to properly order the compute queue.

	(GH#301 [https://github.com/MolSSI/QCPortal/pull/301]) TorsionDriveDataset status can now be checked through the .status() method which shows the
current progress of the computed data.

	(GH#310 [https://github.com/MolSSI/QCPortal/pull/310]) The Client can now modify tasks and restart them if need be in the event of random failures.

	(GH#313 [https://github.com/MolSSI/QCPortal/pull/313]) Queue Managers now have more detailed statistics about failure rates, and core-hours consumed (estimated)

	(GH#314 [https://github.com/MolSSI/QCPortal/pull/314]) The PostgresHarness has been improved to include better error handling if Postgress is not found, and
will not try to stop/start if the target data directory is already configured and running.

	(GH#318 [https://github.com/MolSSI/QCPortal/pull/318]) Large collections are now automatically paginated to improve Server/Client response time and reduce
query sizes. See also GH#322 [https://github.com/MolSSI/QCPortal/pull/322] for the Client-side requested pagination.

	(GH#322 [https://github.com/MolSSI/QCPortal/pull/322]) Client’s can request paginated queries for quicker responses. See also GH#318 [https://github.com/MolSSI/QCPortal/pull/318] for the Server-side
auto-pagination.

	(GH#322 [https://github.com/MolSSI/QCPortal/pull/322]) Record models and their derivatives now have a get_molecule() method for fetching the molecule
directly.

	(GH#324 [https://github.com/MolSSI/QCPortal/pull/324]) Optimization queries for its trajectory pull the entire trajectory in one go and keep the correct order.
get_trajectory also pulls the correct order.

	(GH#325 [https://github.com/MolSSI/QCPortal/pull/325]) Collections’ have been improved to be more efficient. Previous queries are cached locally and the
compute call is now a single function, removing the need to make a separate call to the submission formation.

	(GH#326 [https://github.com/MolSSI/QCPortal/pull/326]) ReactionDataset now explicitly groups the fragments to future-proof this method from upstream
changes to Molecule fragmentation.

	(GH#329 [https://github.com/MolSSI/QCPortal/pull/329]) All API requests are now logged server side anonymously.

	(GH#331 [https://github.com/MolSSI/QCPortal/pull/331]) Queue Manager jobs can now auto-retry failed jobs a finite number of times through QCEngine’s retry
capabilities. This will only catch RandomErrors and all other errors are raised normally.

	(GH#332 [https://github.com/MolSSI/QCPortal/pull/332]) SQLAlchemy layer on the PostgreSQL database has received significant polish

Bug Fixes

	(GH#291 [https://github.com/MolSSI/QCPortal/pull/291]) Queue Manager documentation generation works on Pydantic 0.28+. A number as-of-yet uncaught/unseen bugs
were revealed in tests and have been fixed as well.

	(GH#300 [https://github.com/MolSSI/QCPortal/pull/300]) Errors thrown in the level between Managers and their Adapters now correctly return a FailedOperation
instead of dict to be consistent with all other errors and not crash the Manager.

	(GH#301 [https://github.com/MolSSI/QCPortal/pull/301]) Invalid passwords present a helpful error message now instead of raising an Internal Server Error to the
user.

	(GH#306 [https://github.com/MolSSI/QCPortal/pull/306]) The Manager CLI option tasks-per-worker is correctly hyphens instead of underscores to be consistent
with all other flags.

	(GH#316 [https://github.com/MolSSI/QCPortal/pull/316]) Queue Manager workarounds for older versions of Dask-Jobqueue and Parsl have been removed and implicit
dependency on the newer versions of those Adapters is enforced on CLI usage of qcfractal-manager. These packages
are not required for Fractal, so their versions are only checked when specifically used in the Managers.

	(GH#320 [https://github.com/MolSSI/QCPortal/pull/320]) Duplicated initial_molecules in the TorsionDriveDataset will no longer cause a failure in adding
them to the database while still preserving de-duplication.

	(GH#327 [https://github.com/MolSSI/QCPortal/pull/327]) Jupyter Notebook syntax highlighting has been fixed on Fractal’s documentation pages.

	(GH#331 [https://github.com/MolSSI/QCPortal/pull/331]) The BaseModel/Settings auto-documentation function can no longer throw an error which prevents
using the code.

Deprecated Features

	(GH#291 [https://github.com/MolSSI/QCPortal/pull/291]) Queue Manager Template Generator CLI has been removed as its functionality is superseded by the
qcfractal-manager CLI.

0.7.2 / 2019-06-06

New Features

	(GH#279 [https://github.com/MolSSI/QCPortal/pull/279]) Tasks will be deleted from the TaskQueue once they are completed successfully.

	(GH#271 [https://github.com/MolSSI/QCPortal/pull/271]) A new set of scripts have been created to facilitate migration between MongoDB and PostgreSQL.

Enhancements

	(GH#275 [https://github.com/MolSSI/QCPortal/pull/275]) Documentation has been further updated to be more contiguous between pages.

	(GH#276 [https://github.com/MolSSI/QCPortal/pull/276]) Imports and type hints in Database objects have been improved to remove ambiguity and make imports easier
to follow.

	(GH#280 [https://github.com/MolSSI/QCPortal/pull/280]) Optimizations queried in the database are done with a more efficient lazy selectin. This should make
queries much faster.

	(GH#281 [https://github.com/MolSSI/QCPortal/pull/281]) Database Migration tech has been moved to their own folder to keep them isolated from normal
production code. This PR also called the testing database test_qcarchivedb to avoid
clashes with production DBs. Finally, a new keyword for testing geometry optimizations
has been added.

Bug Fixes

	(GH#280 [https://github.com/MolSSI/QCPortal/pull/280]) Fixed a SQL query where join was set instead of noload in the lazy reference.

	(GH#283 [https://github.com/MolSSI/QCPortal/pull/283]) The monkey-patch for Dask + LSF had a typo in the keyword for its invoke. This has
been fixed for the monkey-patch, as the upstream change was already fixed.

0.7.1 / 2019-05-28

Bug Fixes

	(GH#277 [https://github.com/MolSSI/QCPortal/pull/277]) A more informative error is thrown when Mongo is not found by FractalSnowflake.

	(GH#277 [https://github.com/MolSSI/QCPortal/pull/277]) ID’s are no longer presented when listing Collections in Portal to minimize extra data.

	(GH#278 [https://github.com/MolSSI/QCPortal/pull/278]) Fixed a bug in Portal where the Server was not reporting the correct unit.

0.7.0 / 2019-05-27

New Features

	(GH#206 [https://github.com/MolSSI/QCPortal/pull/206], GH#249 [https://github.com/MolSSI/QCPortal/pull/249], GH#264 [https://github.com/MolSSI/QCPortal/pull/264], GH#267 [https://github.com/MolSSI/QCPortal/pull/267]) SQL Database is now feature complete and implemented. As final testing in
production is continued, MongoDB will be phased out in the future.

	(GH#242 [https://github.com/MolSSI/QCPortal/pull/242]) Parsl can now be used as an Adapter in the Queue Managers.

	(GH#247 [https://github.com/MolSSI/QCPortal/pull/247]) The new OptimizationDataset collection has been added! This collection returns a set of optimized
molecular structures given an initial input.

	(GH#254 [https://github.com/MolSSI/QCPortal/pull/254]) The QCFractal Server Dashboard is now available through a Dash interface. Although not fully featured yet,
future updates will improve this as features are requested.

	(GH#260 [https://github.com/MolSSI/QCPortal/pull/260]) Its now even easier to install Fractal/Portal through conda with pre-built environments on the
qcarchive conda channel. This channel only provides environment files, no packages (and there are not plans to
do so.)

	(GH#269 [https://github.com/MolSSI/QCPortal/pull/269]) The Fractal Snowflake project has been extended to work in Jupyter Notebooks. A Fractal Snowflake can
be created with the FractalSnowflakeHandler inside of a Jupyter Session.

Database Compatibility Updates

	(GH#256 [https://github.com/MolSSI/QCPortal/pull/256]) API calls to Elemental 0.4 have been updated. This changes the hashing system and so upgrading your
Fractal Server instance to this (or higher) will require an upgrade path to the indices.

Enhancements

	(GH#238 [https://github.com/MolSSI/QCPortal/pull/238]) GridOptimizationRecord supports the helper function get_final_molecules which returns the
set of molecules at each final, optimized grid point.

	(GH#259 [https://github.com/MolSSI/QCPortal/pull/259]) Both GridOptimizationRecord and TorsionDriveRecord support the helper function
get_final_results, which is like get_final_molecules, but for x

	(GH#241 [https://github.com/MolSSI/QCPortal/pull/241]) The visualization suite with Plotly has been made more general so it can be invoked in different classes.
This particular PR updates the TorsionDriveDataSet objects.

	(:pr:`243) TorsionDrives in Fractal now support the updated Torsion Drive API from the underlying package. This
includes both the new arguments and the “extra constraints” features.

	(GH#244 [https://github.com/MolSSI/QCPortal/pull/244]) Tasks which fail are now more verbose in the log as to why they failed. This is additional information
on top of the number of pass/fail.

	(GH#246 [https://github.com/MolSSI/QCPortal/pull/246]) Queue Manager verbosity level is now passed down into the adapter programs as well and the log
file (if set) will continue to print to the terminal as well as the physical file.

	(GH#247 [https://github.com/MolSSI/QCPortal/pull/247]) Procedure classes now all derive from a common base class to be more consistent with one another and
for any new Procedures going forward.

	(GH#248 [https://github.com/MolSSI/QCPortal/pull/248]) Jobs which fail, or cannot be returned correctly, from Queue Managers are now better handled in the
Manager and don’t sit in the Manager’s internal buffer. They will attempt to be returned to the Server on later
updates. If too many jobs become stale, the Manager will shut itself down for safety.

	(GH#258 [https://github.com/MolSSI/QCPortal/pull/258] and GH#268 [https://github.com/MolSSI/QCPortal/pull/268]) Fractal Queue Managers are now fully documented, both from the CLI and through the doc pages
themselves. There have also been a few variables renamed and moved to be more clear the nature of what they do.
See the PR for the renamed variables.

	(GH#251 [https://github.com/MolSSI/QCPortal/pull/251]) The Fractal Server now reports valid minimum/maximum allowed client versions. The Portal Client will try
check these numbers against itself and fail to connect if it is not within the Server’s allowed ranges. Clients
started from Fractal’s interface do not make this check.

Bug Fixes

	(GH#248 [https://github.com/MolSSI/QCPortal/pull/248]) Fixed a bug in Queue Managers where the extra worker startup commands for the Dask Adapter were not being
parsed correctly.

	(GH#250 [https://github.com/MolSSI/QCPortal/pull/250]) Record objects now correctly set their provenance time on object creation, not module import.

	(GH#253 [https://github.com/MolSSI/QCPortal/pull/253]) A spelling bug was fixed in GridOptimization which caused hashing to not be processed correctly.

	(GH#270 [https://github.com/MolSSI/QCPortal/pull/270]) LSF clusters not in MB for the units on memory by config are now auto-detected (or manually set)
without large workarounds in the YAML file and the CLI file itself. Supports documented settings of LSF 9.1.3.

0.6.0 / 2019-03-30

Enhancements

	(GH#236 [https://github.com/MolSSI/QCPortal/pull/236] and GH#237 [https://github.com/MolSSI/QCPortal/pull/237]) A large number of docstrings have been improved to be both more uniform,
complete, and correct.

	(GH#239 [https://github.com/MolSSI/QCPortal/pull/239]) DFT-D3 can now be queried through the Dataset and ReactionDataset.

	(GH#239 [https://github.com/MolSSI/QCPortal/pull/239]) list_collections now returns Pandas Dataframes.

0.5.5 / 2019-03-26

New Features

	(GH#228 [https://github.com/MolSSI/QCPortal/pull/228]) ReactionDatasets visualization statistics plots can now be generated through Plotly! This feature includes
bar plots and violin plots and is designed for interactive use through websites, Jupyter notebooks, and more.

	(GH#233 [https://github.com/MolSSI/QCPortal/pull/233]) TorsionDrive Datasets have custom visualization statistics through Plotly! This allows plotting 1-D
torsion scans against other ones.

Enhancements

	(GH#226 [https://github.com/MolSSI/QCPortal/pull/226]) LSF can now be specified for the Queue Managers for Dask managers.

	(GH#228 [https://github.com/MolSSI/QCPortal/pull/228]) Plotly is an optional dependency overall, it is not required to run QCFractal or QCPortal but will be
downloaded in some situations. If you don’t have Plotly installed, more graceful errors beyond just raw
ImportErrors are given.

	(GH#234 [https://github.com/MolSSI/QCPortal/pull/234]) Queue Managers now report the number of passed and failed jobs they return to the server and can also
have verbose (debug level) outputs to the log.

	(GH#234 [https://github.com/MolSSI/QCPortal/pull/234]) Dask-driven Queue Managers can now be set to simply scale up to a fixed number of workers instead of
trying to adapt the number of workers on the fly.

Bug Fixes

	(GH#227 [https://github.com/MolSSI/QCPortal/pull/227]) SGE Clusters specified in Queue Manager under Dask correctly process job_extra for additional
scheduler headers. This is implemented in a stable way such that if the upstream Dask Jobqueue implements a fix, the
Manager will keep working without needing to get a new release.

	(GH#234 [https://github.com/MolSSI/QCPortal/pull/234]) Fireworks Managers now return the same pydantic models as every other Manager instead of raw dictionaries.

0.5.4 / 2019-03-21

New Features

	(GH#216 [https://github.com/MolSSI/QCPortal/pull/216]) Jobs submitted to the queue can now be assigned a priority to be served out to the Managers.

	(GH#219 [https://github.com/MolSSI/QCPortal/pull/219]) Temporary, pop-up, local instances of FractalServer can now be created through the
FractalSnowflake. This creates an instance of FractalServer, with its database structure, which is entirely
held in temporary storage and memory, all of which is deleted upon exit/stop. This feature is designed for those
who want to tinker with Fractal without needed to create their own database or connect to a production
FractalServer.

	(GH#220 [https://github.com/MolSSI/QCPortal/pull/220]) Queue Managers can now set the scratch_directory variable that is passed to QCEngine and its workers.

Enhancements

	(GH#216 [https://github.com/MolSSI/QCPortal/pull/216]) Queue Managers now report what programs and procedures they have access to and will only pull jobs they
think they can execute.

	(GH#222 [https://github.com/MolSSI/QCPortal/pull/222]) All of FractalClient’s methods now have full docstrings and type annotations for clairy

	(GH#222 [https://github.com/MolSSI/QCPortal/pull/222]) Massive overhaul to the REST interface to simplify internal calls from the client and server side.

	(GH#223 [https://github.com/MolSSI/QCPortal/pull/223]) TorsionDriveDataset objects are modeled through pydantic objects to allow easier interface with the
database back end and data validation.

Bug Fixes

	(GH#215 [https://github.com/MolSSI/QCPortal/pull/215]) Dask Jobqueue for the qcfractal-manager is now tested and working. This resolve the outstanding issue
introduced in GH#211 [https://github.com/MolSSI/QCPortal/pull/211] and pushed in v0.5.3.

	(GH#216 [https://github.com/MolSSI/QCPortal/pull/216]) Tasks are now stored as TaskRecord pydantic objects which now preempts a bug introduced
from providing the wrong schema.

	(GH#217 [https://github.com/MolSSI/QCPortal/pull/217]) Standalone QCPortal installs now report the correct version

	(GH#221 [https://github.com/MolSSI/QCPortal/pull/221]) Fixed a bug in ReactionDataset.query where passing in None was treated as a string.

0.5.3 / 2019-03-13

New Features

	(GH#207 [https://github.com/MolSSI/QCPortal/pull/207]) All compute operations can now be augmented with a tag which can be later consumed by different
``QueueManager``s to only carry out computations with specified tags.

	(GH#210 [https://github.com/MolSSI/QCPortal/pull/210]) Passwords in the database can now be generated for new users and user information can be updated (server-side only)

	(GH#210 [https://github.com/MolSSI/QCPortal/pull/210]) Collections can now be updated automatically from the defaults

	(GH#211 [https://github.com/MolSSI/QCPortal/pull/211]) The qcfractal-manager CLI command now accepts a config file for more complex Managers through Dask JobQueue.
As such, many of the command line flags have been altered and can be used to either spin up a PoolExecutor, or overwrite the
config file on-the-fly. As of this PR, the Dask Jobqueue component has been untested. Future updates will indicate
when this has been tested.

Enhancements

	(GH#203 [https://github.com/MolSSI/QCPortal/pull/203]) FractalClient’s get_X methods have been renamed to query_X to better reflect what they actually do.
An exception to this is the get_collections method which is still a true get.

	(GH#207 [https://github.com/MolSSI/QCPortal/pull/207]) FractalClient.list_collections now respects show case sensitive results and queries are case
insensitive

	(GH#207 [https://github.com/MolSSI/QCPortal/pull/207]) FractalServer can now compress responses to reduce the amount of data transmitted over the serialization.
The main benefactor here is the OpenFFWorkflow collection which has significant transfer speed improvements due to compression.

	(GH#207 [https://github.com/MolSSI/QCPortal/pull/207]) The OpenFFWorkflow collection now has better validation on input and output data.

	(GH#210 [https://github.com/MolSSI/QCPortal/pull/210]) The OpenFFWorkflow collection only stores database id to reduce duplication and data transfer quantities.
This results in about a 50x duplication reduction.

	(GH#211 [https://github.com/MolSSI/QCPortal/pull/211]) The qcfractal-template command now has fields for Fractal username and password.

	(GH#212 [https://github.com/MolSSI/QCPortal/pull/212]) The docs for QCFractal and QCPortal have been split into separate structures. They will be hosted on
separate (although linked) pages, but their content will all be kept in the QCFractal source code. QCPortal’s docs
are for most users whereas QCFractal docs will be for those creating their own Managers, Fractal instances, and
developers.

Bug Fixes

	(GH#207 [https://github.com/MolSSI/QCPortal/pull/207]) FractalClient.get_collections is now correctly case insensitive.

	(GH#210 [https://github.com/MolSSI/QCPortal/pull/210]) Fixed a bug in the iterate method of services which returned the wrong status if everything completed right away.

	(GH#210 [https://github.com/MolSSI/QCPortal/pull/210]) The repr of the MongoEngine Socket now displays correctly instead of crashing the socket due to missing attribute

0.5.2 / 2019-03-08

New Features

	(GH#197 [https://github.com/MolSSI/QCPortal/pull/197]) New FractalClient instances will automatically connect to the central MolSSI Fractal Server

Enhancements

	(GH#195 [https://github.com/MolSSI/QCPortal/pull/195]) Read-only access has been granted to many objects separate from their write access.
This is in contrast to the previous model where either there was no access security, or
everything was access secure.

	(GH#197 [https://github.com/MolSSI/QCPortal/pull/197]) Unknown stoichiometry are no longer allowed in the ReactionDataset

	(GH#197 [https://github.com/MolSSI/QCPortal/pull/197]) CLI for FractalServer uses Executor only to encourage using the
Template Generator introduced in GH#177 [https://github.com/MolSSI/QCPortal/pull/177].

	(GH#197 [https://github.com/MolSSI/QCPortal/pull/197]) Dataset objects can now query keywords from aliases as well.

Bug Fixes

	(GH#195 [https://github.com/MolSSI/QCPortal/pull/195]) Managers cannot pull too many tasks and potentially loose data due to query limits.

	(GH#195 [https://github.com/MolSSI/QCPortal/pull/195]) Records now correctly adds Provenance information

	(GH#196 [https://github.com/MolSSI/QCPortal/pull/196]) compute_torsion example update to reflect API changes

	(GH#197 [https://github.com/MolSSI/QCPortal/pull/197]) Fixed an issue where CLI input flags were not correctly overwriting default values

	(GH#197 [https://github.com/MolSSI/QCPortal/pull/197]) Fixed an issue where Collections were not correctly updating when the save function was called
on existing objects in the database.

	(GH#197 [https://github.com/MolSSI/QCPortal/pull/197]) _qcfractal_tags are no longer carried through the Records objects in errant.

	(GH#197 [https://github.com/MolSSI/QCPortal/pull/197]) Stoichiometry information is no longer accepted in the Dataset object since this is not
used in this class of object anymore (see ReactionDataset).

0.5.1 / 2019-03-04

New Features

	(GH#177 [https://github.com/MolSSI/QCPortal/pull/177]) Adds a new qcfractal-template command to generate qcfractal-manager scripts.

	(GH#181 [https://github.com/MolSSI/QCPortal/pull/181]) Pagination is added to queries, defaults to 1000 matches.

	(GH#185 [https://github.com/MolSSI/QCPortal/pull/185]) Begins setup documentation.

	(GH#186 [https://github.com/MolSSI/QCPortal/pull/186]) Begins database design documentation.

	(GH#187 [https://github.com/MolSSI/QCPortal/pull/187]) Results add/update is now simplified to always store entire objects rather than update partials.

	(GH#189 [https://github.com/MolSSI/QCPortal/pull/189]) All database compute records now go through a single BaseRecord class that validates and hashes the objects.

Enhancements

	(GH#175 [https://github.com/MolSSI/QCPortal/pull/175]) Refactors query massaging logic to a single function, ensures all program queries are lowercase, etc.

	(GH#175 [https://github.com/MolSSI/QCPortal/pull/175]) Keywords are now lazy reference fields.

	(GH#182 [https://github.com/MolSSI/QCPortal/pull/182]) Reworks models to have strict fields, and centralizes object hashing with many tests.

	(GH#183 [https://github.com/MolSSI/QCPortal/pull/183]) Centralizes duplicate checking so that accidental mixed case duplicate results could go through.

	(GH#190 [https://github.com/MolSSI/QCPortal/pull/190]) Adds QCArchive sphinx theme to the documentation.

Bug Fixes

	(GH#176 [https://github.com/MolSSI/QCPortal/pull/176]) Benchmarks folder no longer shipped with package

0.5.0 / 2019-02-20

New Features

	(GH#165 [https://github.com/MolSSI/QCPortal/pull/165]) Separates datasets into a Dataset, ReactionDataset, and OptimizationDataset for future flexability.

	(GH#168 [https://github.com/MolSSI/QCPortal/pull/168]) Services now save their Procedure stubs automatically, the same as normal Procedures.

	(GH#169 [https://github.com/MolSSI/QCPortal/pull/169]) setup.py now uses the README.md and conveys Markdown to PyPI.

	(GH#171 [https://github.com/MolSSI/QCPortal/pull/171]) Molecule addition now takes in a flat list and returns a flat list of IDs rather than using a dictionary.

	(GH#173 [https://github.com/MolSSI/QCPortal/pull/173]) Services now return their correspond Procedure ID fields.

Enhancements

	(GH#163 [https://github.com/MolSSI/QCPortal/pull/163]) Ignores pre-existing IDs during storage add operations.

	(GH#167 [https://github.com/MolSSI/QCPortal/pull/167]) Allows empty queries to successfully return all results rather than all data in a collection.

	(GH#172 [https://github.com/MolSSI/QCPortal/pull/172]) Bumps pydantic version to 0.20 and updates API.

Bug Fixes

	(GH#170 [https://github.com/MolSSI/QCPortal/pull/170]) Switches Parsl from IPPExecutor to ThreadExecutor to prevent some bad semaphore conflicts with PyTest.

0.5.0rc1 / 2019-02-15

New Features

	(GH#114 [https://github.com/MolSSI/QCPortal/pull/114]) A new Collection: Generic, has been added to allow semi-structured user defined data to be built without relying only on implemented collections.

	(GH#125 [https://github.com/MolSSI/QCPortal/pull/125]) QCElemental common pydantic models have been integrated throughout the QCFractal code base, making a common model repository for the prevalent Molecule object (and others) come from a single source.
Also converted QCFractal to pass serialized pydantic objects between QCFractal and QCEngine to allow validation and (de)serialization of objects automatically.

	(GH#130 [https://github.com/MolSSI/QCPortal/pull/130], GH#142 [https://github.com/MolSSI/QCPortal/pull/142], and GH#145 [https://github.com/MolSSI/QCPortal/pull/145]) Pydantic serialization has been added to all REST calls leaving and entering both QCFractal Servers and QCFractal Portals. This allows automatic REST call validation and formatting on both server and client sides.

	(GH#141 [https://github.com/MolSSI/QCPortal/pull/141] and GH#152 [https://github.com/MolSSI/QCPortal/pull/152]) A new GridOptimizationRecord service has been added to QCFractal. This feature supports relative starting positions from the input molecule.

Enhancements

General note: Options objects have been renamed to KeywordSet to better match their goal (See GH#155 [https://github.com/MolSSI/QCPortal/pull/155].)

	(GH#110 [https://github.com/MolSSI/QCPortal/pull/110]) QCFractal now depends on QCElemental and QCEngine to improve consistent imports.

	(GH#116 [https://github.com/MolSSI/QCPortal/pull/116]) Queue Manger Adapters are now more generalized and inherit more from the base classes.

	(GH#118 [https://github.com/MolSSI/QCPortal/pull/118]) Single and Optimization procedures have been streamlined to have simpler submission specifications and less redundancy.

	(GH#133 [https://github.com/MolSSI/QCPortal/pull/133]) Fractal Server and Queue Manager startups are much more verbose and include version information.

	(GH#135 [https://github.com/MolSSI/QCPortal/pull/135]) The TorsionDriveService has a much more regular structure based on pydantic models and a new TorsionDrive model has been created to enforce both validation and regularity.

	(GH#143 [https://github.com/MolSSI/QCPortal/pull/143]) Task``s in the Mongo database can now be referenced by multiple ``Results and Procedures (i.e. a single Result or Procedure does not have ownership of a Task.)

	(GH#147 [https://github.com/MolSSI/QCPortal/pull/147]) Service submission has been overhauled such that all services submit to a single source. Right now, only one service can be submitted at a time (to be expanded in a future feature.)
TorsionDrive can now have multiple molecule inputs.

	(GH#149 [https://github.com/MolSSI/QCPortal/pull/149]) Package import logic has been reworked to reduce the boot-up time of QCFractal from 3000ms at the worst to about 600ms.

	(GH#150 [https://github.com/MolSSI/QCPortal/pull/150]) ``KeywordSet``s are now modeled much more consistently through pydantic models and are consistently hashed to survive round trip serialization.

	(GH#153 [https://github.com/MolSSI/QCPortal/pull/153]) Datasets now support option aliases which map to the consistent KeywordSet models from GH#150 [https://github.com/MolSSI/QCPortal/pull/150].

	(GH#155 [https://github.com/MolSSI/QCPortal/pull/155]) Adding multiple Molecule or Result objects to the database at the same time now always return their Database ID’s if added, and order of returned list of ID’s matches input order.
This PR also renamed Options to KeywordSet to properly reflect the goal of the object.

	(GH#156 [https://github.com/MolSSI/QCPortal/pull/156]) Memory and Number of Cores per Task can be specified when spinning up a Queue Manager and/or Queue Adapter objects.
These settings are passed on to QCEngine. These must be hard-set by users and no environment inspection is done. Users may continue to choose
not to set these and QCEngine will consume everything it can when it lands on a compute.

	(GH#162 [https://github.com/MolSSI/QCPortal/pull/162]) Services can now be saved and fetched from the database through MongoEngine with document validation on both actions.

Bug Fixes

	(GH#132 [https://github.com/MolSSI/QCPortal/pull/132]) Fixed MongoEngine Socket bug where calling some functions before others resulted in an error due to lack of initialized variables.

	(GH#133 [https://github.com/MolSSI/QCPortal/pull/133]) Molecule objects cannot be oriented once they enter the QCFractal ecosystem (after optional initial orientation.)
``Molecule``s also cannot be oriented by programs invoked by the QCFractal ecosystem so orientation is preserved post-calculation.

	(GH#146 [https://github.com/MolSSI/QCPortal/pull/146]) CI environments have been simplified to make maintaining them easier, improve test coverage, and find more bugs.

	(GH#158 [https://github.com/MolSSI/QCPortal/pull/158]) Database addition documents in general will strip IDs from the input dictionary which caused issues from MongoEngine having a special treatment for the dictionary key “id”.

0.4.0a / 2019-01-15

This is the fourth alpha release of QCFractal focusing on the database backend
and compute manager enhancements.

New Features

	(GH#78 [https://github.com/MolSSI/QCPortal/pull/78]) Migrates Mongo backend to MongoEngine.

	(GH#78 [https://github.com/MolSSI/QCPortal/pull/78]) Overhauls tasks so that results or procedures own a task and ID.

	(GH#78 [https://github.com/MolSSI/QCPortal/pull/78]) Results and procedures are now inserted upon creation, not just completion. Added a status field to results and procedures.

	(GH#78 [https://github.com/MolSSI/QCPortal/pull/78]) Overhauls storage API to no longer accept arbitrary JSON queries, but now pinned kwargs.

	(GH#106 [https://github.com/MolSSI/QCPortal/pull/106]) Compute managers now have heartbeats and tasks are recycled after a manager has not been heard from after a preset interval.

	(GH#106 [https://github.com/MolSSI/QCPortal/pull/106]) Managers now also quietly shutdown on SIGTERM as well as SIGINT.

Bug Fixes

	(GH#102 [https://github.com/MolSSI/QCPortal/pull/102]) Py37 fix for pydantic and better None defaults for options.

	(GH#107 [https://github.com/MolSSI/QCPortal/pull/107]) FractalClient.get_collections now raises an exception when no collection is found.

0.3.0a / 2018-11-02

This is the third alpha release of QCFractal focusing on a command line
interface and the ability to have multiple queues interacting with a central
server.

New Features

	(GH#72 [https://github.com/MolSSI/QCPortal/pull/72]) Queues are no longer required of FractalServer instances, now separate QueueManager instances can be created that push and pull tasks to the server.

	(GH#80 [https://github.com/MolSSI/QCPortal/pull/80]) A Parsl [http://parsl-project.org] Queue Manager was written.

	(GH#75 [https://github.com/MolSSI/QCPortal/pull/75]) CLI’s have been added for the qcfractal-server and qcfractal-manager instances.

	(GH#83 [https://github.com/MolSSI/QCPortal/pull/83]) The status of server tasks and services can now be queried from a FractalClient.

	(GH#82 [https://github.com/MolSSI/QCPortal/pull/82]) OpenFF Workflows can now add single optimizations for fragments.

Enhancements

	(GH#74 [https://github.com/MolSSI/QCPortal/pull/74]) The documentation now has flowcharts showing task and service pathways through the code.

	(GH#73 [https://github.com/MolSSI/QCPortal/pull/73]) Collection .data attributes are now typed and validated with pydantic.

	(GH#85 [https://github.com/MolSSI/QCPortal/pull/85]) The CLI has been enhanced to cover additional features such as queue-manager ping time.

	(GH#84 [https://github.com/MolSSI/QCPortal/pull/84]) QCEngine 0.4.0 and geomeTRIC 0.9.1 versions are now compatible with QCFractal.

Bug Fixes

	(GH#92 [https://github.com/MolSSI/QCPortal/pull/92]) Fixes an error with query OpenFFWorkflows.

0.2.0a / 2018-10-02

This is the second alpha release of QCFractal containing architectural changes
to the relational pieces of the database. Base functionality has been expanded
to generalize the collection idea with BioFragment and OpenFFWorkflow
collections.

Documentation

	(GH#58 [https://github.com/MolSSI/QCPortal/pull/58]) A overview of the QCArchive project was added to demonstrate how all modules connect together.

New Features

	(GH#57 [https://github.com/MolSSI/QCPortal/pull/57]) OpenFFWorkflow and BioFragment collections to support OpenFF uses cases.

	(GH#57 [https://github.com/MolSSI/QCPortal/pull/57]) Requested compute will now return the id of the new submissions or the id of the completed results if duplicates are submitted.

	(GH#67 [https://github.com/MolSSI/QCPortal/pull/67]) The OpenFFWorkflow collection now supports querying of individual geometry optimization trajectories and associated data for each torsiondrive.

Enhancements

	(GH#43 [https://github.com/MolSSI/QCPortal/pull/43]) Services and Procedures now exist in the same unified table when complete as a single procedure can be completed in either capacity.

	(GH#44 [https://github.com/MolSSI/QCPortal/pull/44]) The backend database was renamed to storage to prevent misunderstanding of the Database collection.

	(GH#47 [https://github.com/MolSSI/QCPortal/pull/47]) Tests can that require an activate Mongo instance are now correctly skipped.

	(GH#51 [https://github.com/MolSSI/QCPortal/pull/51]) The queue now uses a fast hash index to determine uniqueness and prevent duplicate tasks.

	(GH#52 [https://github.com/MolSSI/QCPortal/pull/52]) QCFractal examples are now tested via CI.

	(GH#53 [https://github.com/MolSSI/QCPortal/pull/53]) The MongoSocket get_generic_by_id was deprecated in favor of get_generic where an ID can be a search field.

	(GH#61 [https://github.com/MolSSI/QCPortal/pull/61], GH#64 [https://github.com/MolSSI/QCPortal/pull/64]) TorsionDrive now tracks tasks via ID rather than hash to ensure integrity.

	(GH#63 [https://github.com/MolSSI/QCPortal/pull/63]) The Database collection was renamed Dataset to more correctly illuminate its purpose.

	(GH#65 [https://github.com/MolSSI/QCPortal/pull/65]) Collection can now be aquired directly from a client via the client.get_collection function.

Bug Fixes

	(GH#52 [https://github.com/MolSSI/QCPortal/pull/52]) The molecular comparison technology would occasionally incorrectly orientate molecules.

0.1.0a / 2018-09-04

This is the first alpha release of QCFractal containing the primary structure
of the project and base functionality.

New Features

	(GH#41 [https://github.com/MolSSI/QCPortal/pull/41]) Molecules can now be queried by molecule formula

	(GH#39 [https://github.com/MolSSI/QCPortal/pull/39]) The server can now use SSL protection and auto-generates SSL certificates if no certificates are provided.

	(GH#31 [https://github.com/MolSSI/QCPortal/pull/31]) Adds authentication to the FractalServer instance.

	(GH#26 [https://github.com/MolSSI/QCPortal/pull/26]) Adds TorsionDrive (formally Crank) as the first service.

	(GH#26 [https://github.com/MolSSI/QCPortal/pull/26]) Adds a “services” feature which can create large-scale iterative workflows.

	(GH#21 [https://github.com/MolSSI/QCPortal/pull/21]) QCFractal now maintains its own internal queue and uses queuing services such as Fireworks or Dask only for the currently running tasks

Enhancements

	(GH#40 [https://github.com/MolSSI/QCPortal/pull/40]) Examples can now be testing through PyTest.

	(GH#38 [https://github.com/MolSSI/QCPortal/pull/38]) First major documentation pass.

	(GH#37 [https://github.com/MolSSI/QCPortal/pull/37]) Canonicalizes string formatting to the "{}".format usage.

	(GH#36 [https://github.com/MolSSI/QCPortal/pull/36]) Fireworks workflows are now cleared once complete to keep the active entries small.

	(GH#35 [https://github.com/MolSSI/QCPortal/pull/35]) The “database” table can now be updated so that database entries can now evolve over time.

	(GH#32 [https://github.com/MolSSI/QCPortal/pull/32]) TorsionDrive services now track all computations that are completed rather than just the last iteration.

	(GH#30 [https://github.com/MolSSI/QCPortal/pull/30]) Creates a Slack Community and auto-invite badge on the main readme.

	(GH#24 [https://github.com/MolSSI/QCPortal/pull/24]) Remove conda-forge from conda-envs so that more base libraries can be used.

Bug Fixes

	Innumerable bug fixes and improvements in this alpha release.

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | J
 | K
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_collection() (in module qcportal.FractalClient)

 	add_compute() (in module qcportal.FractalClient)

 	add_contributed_values() (qcportal.collections.Dataset method)

 	(qcportal.collections.ReactionDataset method)

 	add_entry() (qcfractal.interface.collections.TorsionDriveDataset method)

 	(qcportal.collections.Dataset method)

 	(qcportal.collections.OptimizationDataset method)

 	(qcportal.collections.ReactionDataset method)

 	add_ie_rxn() (qcportal.collections.ReactionDataset method)

 	
 	add_keywords() (in module qcportal.FractalClient)

 	(qcportal.collections.Dataset method)

 	(qcportal.collections.ReactionDataset method)

 	add_molecules() (in module qcportal.FractalClient)

 	add_procedure() (in module qcportal.FractalClient)

 	add_rxn() (qcportal.collections.ReactionDataset method)

 	add_service() (in module qcportal.FractalClient)

 	add_specification() (qcfractal.interface.collections.TorsionDriveDataset method)

 	(qcportal.collections.OptimizationDataset method)

B

 	
 	build_ie_fragments() (qcportal.collections.ReactionDataset static method)

 	
 	build_schema_input() (qcportal.models.OptimizationRecord method), [1]

C

 	
 	CollectionGETBody (class in qcportal.models.rest_models)

 	CollectionGETResponse (class in qcportal.models.rest_models)

 	CollectionPOSTBody (class in qcportal.models.rest_models)

 	CollectionPOSTResponse (class in qcportal.models.rest_models)

 	compare() (qcfractal.interface.collections.TorsionDriveDataset.DataModel method)

 	(qcportal.collections.OptimizationDataset.DataModel method)

 	(qcportal.collections.ReactionDataset.DataModel method)

 	compute() (qcfractal.interface.collections.TorsionDriveDataset method)

 	(qcportal.collections.Dataset method)

 	(qcportal.collections.OptimizationDataset method)

 	(qcportal.collections.ReactionDataset method)

 	
 	construct() (qcfractal.interface.collections.TorsionDriveDataset.DataModel class method)

 	(qcportal.collections.OptimizationDataset.DataModel class method)

 	(qcportal.collections.ReactionDataset.DataModel class method)

 	copy (qcfractal.interface.collections.TorsionDriveDataset.DataModel attribute)

 	(qcportal.collections.OptimizationDataset.DataModel attribute)

 	(qcportal.collections.ReactionDataset.DataModel attribute)

 	counts() (qcfractal.interface.collections.TorsionDriveDataset method)

 	(qcportal.collections.OptimizationDataset method)

D

 	
 	Dataset (class in qcportal.collections)

 	Dataset.DataModel (class in qcportal.collections)

 	DB Index

 	DB Socket

 	DB Table

 	
 	deserialize_key() (qcportal.models.GridOptimizationRecord static method)

 	dict() (qcfractal.interface.collections.TorsionDriveDataset.DataModel method)

 	(qcportal.collections.OptimizationDataset.DataModel method)

 	(qcportal.collections.ReactionDataset.DataModel method)

 	download() (qcportal.collections.Dataset method)

 	(qcportal.collections.ReactionDataset method)

E

 	
 	EmptyMeta (class in qcportal.models.rest_models)

F

 	
 	from_file() (in module qcportal.FractalClient)

 	from_json() (qcfractal.interface.collections.TorsionDriveDataset class method)

 	(qcportal.collections.OptimizationDataset class method)

 	(qcportal.collections.ReactionDataset class method)

 	
 	from_server() (qcfractal.interface.collections.TorsionDriveDataset class method)

 	(qcportal.collections.OptimizationDataset class method)

 	(qcportal.collections.ReactionDataset class method)

G

 	
 	get_collection() (in module qcportal.FractalClient)

 	get_entries() (qcportal.collections.Dataset method)

 	(qcportal.collections.ReactionDataset method)

 	get_entry() (qcfractal.interface.collections.TorsionDriveDataset method)

 	(qcportal.collections.OptimizationDataset method)

 	get_final_energies() (qcportal.models.GridOptimizationRecord method)

 	get_final_energy() (qcportal.models.OptimizationRecord method), [1]

 	get_final_molecule() (qcportal.models.OptimizationRecord method), [1]

 	get_final_molecules() (qcportal.models.GridOptimizationRecord method)

 	get_final_results() (qcportal.models.GridOptimizationRecord method)

 	get_history() (qcportal.models.GridOptimizationRecord method)

 	get_index() (qcportal.collections.Dataset method)

 	(qcportal.collections.ReactionDataset method)

 	get_initial_molecule() (qcportal.models.OptimizationRecord method), [1]

 	get_keywords() (qcportal.collections.Dataset method)

 	(qcportal.collections.ReactionDataset method)

 	
 	get_molecular_trajectory() (qcportal.models.OptimizationRecord method), [1]

 	get_molecules() (qcportal.collections.Dataset method)

 	(qcportal.collections.ReactionDataset method)

 	get_record() (qcfractal.interface.collections.TorsionDriveDataset method)

 	(qcportal.collections.OptimizationDataset method)

 	get_records() (qcportal.collections.Dataset method)

 	(qcportal.collections.ReactionDataset method)

 	get_rxn() (qcportal.collections.ReactionDataset method)

 	get_scan_dimensions() (qcportal.models.GridOptimizationRecord method)

 	get_scan_value() (qcportal.models.GridOptimizationRecord method)

 	get_specification() (qcfractal.interface.collections.TorsionDriveDataset method)

 	(qcportal.collections.OptimizationDataset method)

 	get_trajectory() (qcportal.models.OptimizationRecord method), [1]

 	get_values() (qcportal.collections.Dataset method)

 	(qcportal.collections.ReactionDataset method)

 	GridOptimizationInput (class in qcportal.models)

 	GridOptimizationRecord (class in qcportal.models)

H

 	
 	Hash Index

J

 	
 	json() (qcfractal.interface.collections.TorsionDriveDataset.DataModel method)

 	(qcportal.collections.OptimizationDataset.DataModel method)

 	(qcportal.collections.ReactionDataset.DataModel method)

K

 	
 	KeywordGETBody (class in qcportal.models.rest_models)

 	KeywordGETResponse (class in qcportal.models.rest_models)

 	KeywordPOSTBody (class in qcportal.models.rest_models)

 	
 	KeywordPOSTResponse (class in qcportal.models.rest_models)

 	KeywordSet (class in qcportal.models)

 	KVStoreGETBody (class in qcportal.models.rest_models)

 	KVStoreGETResponse (class in qcportal.models.rest_models)

L

 	
 	list_collections() (in module qcportal.FractalClient)

 	list_records() (qcportal.collections.Dataset method)

 	(qcportal.collections.ReactionDataset method)

 	
 	list_specifications() (qcfractal.interface.collections.TorsionDriveDataset method)

 	(qcportal.collections.OptimizationDataset method)

 	list_values() (qcportal.collections.Dataset method)

 	(qcportal.collections.ReactionDataset method)

M

 	
 	Molecule

 	(class in qcportal.models)

 	MoleculeGETBody (class in qcportal.models.rest_models)

 	
 	MoleculeGETResponse (class in qcportal.models.rest_models)

 	MoleculePOSTBody (class in qcportal.models.rest_models)

 	MoleculePOSTResponse (class in qcportal.models.rest_models)

O

 	
 	ObjectId

 	OptimizationDataset (class in qcportal.collections)

 	OptimizationDataset.DataModel (class in qcportal.collections)

 	
 	OptimizationProtocols (class in qcportal.models)

 	OptimizationRecord (class in qcportal.models), [1]

 	OptimizationSpecification (class in qcportal.models)

P

 	
 	parse_file() (qcfractal.interface.collections.TorsionDriveDataset.DataModel class method)

 	(qcportal.collections.OptimizationDataset.DataModel class method)

 	(qcportal.collections.ReactionDataset.DataModel class method)

 	parse_raw() (qcfractal.interface.collections.TorsionDriveDataset.DataModel class method)

 	(qcportal.collections.OptimizationDataset.DataModel class method)

 	(qcportal.collections.ReactionDataset.DataModel class method)

 	
 	parse_stoichiometry() (qcportal.collections.ReactionDataset method)

 	ProcedureGETBody (class in qcportal.models.rest_models)

 	ProcedureGETResponse (class in qcportal.models.rest_models)

 	Procedures

Q

 	
 	QCSpecification (class in qcportal.models)

 	query() (qcfractal.interface.collections.TorsionDriveDataset method)

 	(qcportal.collections.OptimizationDataset method)

 	query_keywords() (in module qcportal.FractalClient)

 	query_kvstore() (in module qcportal.FractalClient)

 	query_molecules() (in module qcportal.FractalClient)

 	query_procedures() (in module qcportal.FractalClient)

 	query_results() (in module qcportal.FractalClient)

 	query_services() (in module qcportal.FractalClient)

 	
 	query_tasks() (in module qcportal.FractalClient)

 	QueryMeta (class in qcportal.models.rest_models)

 	Queue Adapter

 	QueueManagerGETBody (class in qcportal.models.rest_models)

 	QueueManagerGETResponse (class in qcportal.models.rest_models)

 	QueueManagerMeta (class in qcportal.models.rest_models)

 	QueueManagerPOSTBody (class in qcportal.models.rest_models)

 	QueueManagerPOSTResponse (class in qcportal.models.rest_models)

 	QueueManagerPUTBody (class in qcportal.models.rest_models)

 	QueueManagerPUTResponse (class in qcportal.models.rest_models)

R

 	
 	ReactionDataset (class in qcportal.collections)

 	ReactionDataset.DataModel (class in qcportal.collections)

 	Record

 	ResponseGETMeta (class in qcportal.models.rest_models)

 	ResponseMeta (class in qcportal.models.rest_models)

 	
 	ResponsePOSTMeta (class in qcportal.models.rest_models)

 	ResultGETBody (class in qcportal.models.rest_models)

 	ResultGETResponse (class in qcportal.models.rest_models)

 	ResultProtocols (class in qcportal.models)

 	ResultRecord (class in qcportal.models)

S

 	
 	save() (qcfractal.interface.collections.TorsionDriveDataset method)

 	(qcportal.collections.OptimizationDataset method)

 	(qcportal.collections.ReactionDataset method)

 	serialize() (qcfractal.interface.collections.TorsionDriveDataset.DataModel method)

 	(qcportal.collections.OptimizationDataset.DataModel method)

 	(qcportal.collections.ReactionDataset.DataModel method)

 	serialize_key() (qcportal.models.GridOptimizationRecord static method)

 	server_information() (in module qcportal.FractalClient)

 	Servi