Reaction Dataset¶
ReactionDatasets
are useful for chemical reaction-based computations.
Currently, there are two types of ReactionDatasets
:
canonical chemical reaction datasets,
rxn
: \(A + B \rightarrow C\),interaction energy datasets,
ie
: \(M_{complex} \rightarrow M_{monomer_1} + M_{monomer_2}\).
Querying the Data¶
The result specifications in a ReactionDataset
such as method, basis set, program, keyword, and driver may be listed with
list_values
.
In addition to the aforementioned specifications, ReactionDataset
provides
a stoich
field to select different strategies, including counterpoise-corrected ("cp"
) and uncorrected ("default"
),
for the calculation of interaction and reaction energies.
The computed values of the reaction properties such as interaction or reaction energies
can be queried using get_values
.
For results calculated with QCFractal, the underlying Records
can be retrieved with get_records
and further broken down by
Molecule
within each reaction.
For examples of querying ReactionDatasets
,
see the QCArchive examples.
Statistics and Visualization¶
Statistical analysis on the ReactionDatasets
can be performed via statistics
command
which can be complemented by the visualize
command in order to plot the data. For examples pertinent to data visualization
in ReactionDatasets
see
the QCArchive examples.
Creating the Datasets¶
The Dataset
constructor can be adopted to create an empty dataset
object using a dataset name and type (dtype
) as arguments.
>>> ds = ptl.collections.Dataset("my_dataset", dtype="rxn")
New reactions can be added to the ReactionDatasets
by providing a linear combination of Molecules
in order to compute the desired quantity. When the ReactionDataset
is queried, these linear combinations from chemical equations are automatically combined and presented to the caller.
>>> ds = ptl.collections.Dataset("Atomization Energies", dtype="ie")
>>> N2 = ptl.Molecule.from_data("""
>>> N 0.0 0.0 1.0975
>>> N 0.0 0.0 0.0
>>> unit angstrom
>>> """)
>>> N_atom = ptl.Molecule.from_data("""
>>> 0 2
>>> N 0.0 0.0 0.0
>>> """)
>>> ds.add_rxn("Nitrogen Molecule", [(N2, 1.0), (N_atom, -2.0)])
The details of a given chemical reaction can be obtained through using
get_rxn()
function.
The storage of molecule_hash
in the ReactionDataset
is followed by that of the reaction coefficients.
>>> json.dumps(ds.get_rxn("Nitrogen Molecule"), indent=2)
{
"name": "Nitrogen Molecule",
"stoichiometry": {
"default": {
"1": 1.0,
"2": -2.0
}
},
"attributes": {},
"reaction_results": {
"default": {}
}
}
Datasets of dtype ie
can automatically construct counterpoise-corrected
(cp
) or non-counterpoise-corrected (default
) n-body expansions. The
the key:value pairs of numbers after the stoichiometry entry correspond to the
index of each atomic/molecular species and their corresponding number of moles
(or chemical equivalents) involved in the chemical reaction, respectively.
>>> ie_ds = ptl.collections.ReactionDataset("my_dataset", dtype="rxn")
>>> water_dimer_stretch = ptl.data.get_molecule("water_dimer_minima.psimol")
>>> ie_ds.add_ie_rxn("water dimer minima", water_dimer_stretch)
>>> json.dumps(ie_ds.get_rxn("water dimer minima"), indent=2)
{
"name": "water dimer minima",
"stoichiometry": {
"default1": { # Monomers
"3": 1.0,
"4": 1.0
},
"cp1": { # Monomers
"5": 1.0,
"6": 1.0
},
"default": { # Complex
"7": 1.0
},
"cp": { # Complex
"7": 1.0
}
},
"attributes": {},
"reaction_results": {
"default": {}
}
}
Computational Tasks¶
Computations on the ReactionDatasets
are performed in the same manner as mentioned in Dataset Documentation
section.
API¶
-
class
qcportal.collections.
ReactionDataset
(name: str, client: Optional[FractalClient] = None, ds_type: str = 'rxn', **kwargs)[source]¶ The ReactionDataset class for homogeneous computations on many reactions.
- Variables
client (client.FractalClient) – A FractalClient connected to a server
data (ReactionDataset.DataModel) – A Model representation of the database backbone
df (pd.DataFrame) – The underlying dataframe for the Dataset object
rxn_index (pd.Index) – The unrolled reaction index for all reactions in the Dataset
-
class
DataModel
(*, id: str = 'local', name: str, collection: str, provenance: Dict[str, str] = {}, tags: List[str] = [], tagline: str = None, description: str = None, group: str = 'default', visibility: bool = True, view_url_hdf5: str = None, view_url_plaintext: str = None, view_metadata: Dict[str, str] = None, view_available: bool = False, metadata: Dict[str, Any] = {}, default_program: str = None, default_keywords: Dict[str, str] = {}, default_driver: str = 'energy', default_units: str = 'kcal / mol', default_benchmark: str = None, alias_keywords: Dict[str, Dict[str, str]] = {}, records: List[qcportal.collections.reaction_dataset.ReactionEntry] = None, contributed_values: Dict[str, qcportal.collections.dataset.ContributedValues] = None, history: Set[Tuple[str, str, str, Optional[str], Optional[str], str]] = {}, history_keys: Tuple[str, str, str, str, str, str] = ('driver', 'program', 'method', 'basis', 'keywords', 'stoichiometry'), ds_type: qcportal.collections.reaction_dataset._ReactionTypeEnum = <_ReactionTypeEnum.rxn: 'rxn'>)[source]¶ - Parameters
id (str, Default: local)
name (str)
collection (str)
provenance (name=’provenance’ type=Mapping[str, str] required=False default={}, Default: {})
tags (List[str], Default: [])
tagline (str, Optional)
description (str, Optional)
group (str, Default: default)
visibility (bool, Default: True)
view_url_hdf5 (str, Optional)
view_url_plaintext (str, Optional)
view_metadata (name=’view_metadata’ type=Optional[Mapping[str, str]] required=False default=None, Optional)
view_available (bool, Default: False)
metadata (Dict[str, Any], Default: {})
default_program (str, Optional)
default_keywords (name=’default_keywords’ type=Mapping[str, str] required=False default={}, Default: {})
default_driver (str, Default: energy)
default_units (str, Default: kcal / mol)
default_benchmark (str, Optional)
alias_keywords (Dict[str, Dict[str, str]], Default: {})
records (
ReactionEntry
, Optional)contributed_values (
ContributedValues
, Optional)history (Set[Tuple[str, str, str, str, str, str]], Default: set())
history_keys (Tuple[str, str, str, str, str, str], Default: (‘driver’, ‘program’, ‘method’, ‘basis’, ‘keywords’, ‘stoichiometry’))
ds_type ({rxn,ie}, Default: rxn)
-
class
Config
¶
-
compare
(other: Union[qcelemental.models.basemodels.ProtoModel, pydantic.main.BaseModel], **kwargs) → bool¶ Compares the current object to the provided object recursively.
- Parameters
other (Model) – The model to compare to.
**kwargs – Additional kwargs to pass to
qcelemental.compare_recursive
.
- Returns
True if the objects match.
- Return type
bool
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
-
copy
(*, include: Union[AbstractSetIntStr, MappingIntStrAny] = None, exclude: Union[AbstractSetIntStr, MappingIntStrAny] = None, update: DictStrAny = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(**kwargs) → Dict[str, Any]¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
property
fields
¶
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(**kwargs)¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, encoding: Optional[str] = None) → qcelemental.models.basemodels.ProtoModel¶ Parses a file into a Model object.
- Parameters
path (Union[str, Path]) – The path to the file.
encoding (str, optional) – The type of the files, available types are: {‘json’, ‘msgpack’, ‘pickle’}. Attempts to automatically infer the file type from the file extension if None.
- Returns
The requested model from a serialized format.
- Return type
Model
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(data: Union[bytes, str], *, encoding: Optional[str] = None) → qcelemental.models.basemodels.ProtoModel¶ Parses raw string or bytes into a Model object.
- Parameters
data (Union[bytes, str]) – A serialized data blob to be deserialized into a Model.
encoding (str, optional) – The type of the serialized array, available types are: {‘json’, ‘json-ext’, ‘msgpack-ext’, ‘pickle’}
- Returns
The requested model from a serialized format.
- Return type
Model
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
serialize
(encoding: str, *, include: Optional[Set[str]] = None, exclude: Optional[Set[str]] = None, exclude_unset: Optional[bool] = None, exclude_defaults: Optional[bool] = None, exclude_none: Optional[bool] = None) → Union[bytes, str]¶ Generates a serialized representation of the model
- Parameters
encoding (str) – The serialization type, available types are: {‘json’, ‘json-ext’, ‘msgpack-ext’}
include (Optional[Set[str]], optional) – Fields to be included in the serialization.
exclude (Optional[Set[str]], optional) – Fields to be excluded in the serialization.
exclude_unset (Optional[bool], optional) – If True, skips fields that have default values provided.
exclude_defaults (Optional[bool], optional) – If True, skips fields that have set or defaulted values equal to the default.
exclude_none (Optional[bool], optional) – If True, skips fields that have value
None
.
- Returns
The serialized model.
- Return type
Union[bytes, str]
-
to_string
(pretty: bool = False) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
add_contributed_values
(contrib: qcportal.collections.dataset.ContributedValues, overwrite: bool = False) → None¶ Adds a ContributedValues to the database. Be sure to call save() to commit changes to the server.
- Parameters
contrib (ContributedValues) – The ContributedValues to add.
overwrite (bool, optional) – Overwrites pre-existing values
-
add_entry
(name: str, molecule: Molecule, **kwargs: Dict[str, Any]) → None¶ Adds a new entry to the Dataset
- Parameters
name (str) – The name of the record
molecule (Molecule) – The Molecule associated with this record
**kwargs (Dict[str, Any]) – Additional arguments to pass to the record
-
add_ie_rxn
(name: str, mol: qcelemental.models.molecule.Molecule, **kwargs) → qcportal.collections.reaction_dataset.ReactionEntry[source]¶ Add a interaction energy reaction entry to the database. Automatically builds CP and no-CP reactions for the fragmented molecule.
- Parameters
name (str) – The name of the reaction
mol (Molecule) – A molecule with multiple fragments
**kwargs – Additional kwargs to pass into build_id_fragments.
- Returns
A representation of the new reaction.
- Return type
ReactionEntry
-
add_keywords
(alias: str, program: str, keyword: KeywordSet, default: bool = False) → bool¶ Adds an option alias to the dataset. Not that keywords are not present until a save call has been completed.
- Parameters
alias (str) – The alias of the option
program (str) – The compute program the alias is for
keyword (KeywordSet) – The Keywords object to use.
default (bool, optional) – Sets this option as the default for the program
-
add_rxn
(name: str, stoichiometry: Dict[str, List[Tuple[qcelemental.models.molecule.Molecule, float]]], reaction_results: Optional[Dict[str, str]] = None, attributes: Optional[Dict[str, Union[int, float, str]]] = None, other_fields: Optional[Dict[str, Any]] = None) → qcportal.collections.reaction_dataset.ReactionEntry[source]¶ Adds a reaction to a database object.
- Parameters
name (str) – Name of the reaction.
stoichiometry (list or dict) – Either a list or dictionary of lists
reaction_results (dict or None, Optional, Default: None) – A dictionary of the computed total interaction energy results
attributes (dict or None, Optional, Default: None) – A dictionary of attributes to assign to the reaction
other_fields (dict or None, Optional, Default: None) – A dictionary of additional user defined fields to add to the reaction entry
- Returns
A complete specification of the reaction
- Return type
ReactionEntry
-
static
build_ie_fragments
(mol: qcelemental.models.molecule.Molecule, **kwargs) → Dict[str, List[Tuple[qcelemental.models.molecule.Molecule, float]]][source]¶ Build the stoichiometry for an Interaction Energy.
- Parameters
mol (Molecule class or str) – Molecule to fragment.
do_default (bool) – Create the default (noCP) stoichiometry.
do_cp (bool) – Create the counterpoise (CP) corrected stoichiometry.
do_vmfc (bool) – Create the Valiron-Mayer Function Counterpoise (VMFC) corrected stoichiometry.
max_nbody (int) – The maximum fragment level built, if zero defaults to the maximum number of fragments.
Notes
- Returns
ret – A JSON representation of the fragmented molecule.
- Return type
dict
-
compute
(method: str, basis: Optional[str] = None, *, keywords: Optional[str] = None, program: Optional[str] = None, stoich: str = 'default', ignore_ds_type: bool = False, tag: Optional[str] = None, priority: Optional[str] = None) → ComputeResponse[source]¶ Executes a computational method for all reactions in the Dataset. Previously completed computations are not repeated.
- Parameters
method (str) – The computational method to compute (B3LYP)
basis (Optional[str], optional) – The computational basis to compute (6-31G)
keywords (Optional[str], optional) – The keyword alias for the requested compute
program (Optional[str], optional) – The underlying QC program
stoich (str, optional) – The stoichiometry of the requested compute (cp/nocp/etc)
ignore_ds_type (bool, optional) – Optionally only compute the “default” geometry
tag (Optional[str], optional) – The queue tag to use when submitting compute requests.
priority (Optional[str], optional) – The priority of the jobs low, medium, or high.
- Returns
- An object that contains the submitted ObjectIds of the new compute. This object has the following fields:
ids: The ObjectId’s of the task in the order of input molecules
submitted: A list of ObjectId’s that were submitted to the compute queue
existing: A list of ObjectId’s of tasks already in the database
- Return type
ComputeResponse
-
download
(local_path: Optional[Union[str, pathlib.Path]] = None, verify: bool = True, progress_bar: bool = True) → None¶ Download a remote view if available. The dataset will use this view to avoid server queries for calls to: - get_entries - get_molecules - get_values - list_values
- Parameters
local_path (Optional[Union[str, Path]], optional) – Local path the store downloaded view. If None, the view will be stored in a temporary file and deleted on exit.
verify (bool, optional) – Verify download checksum. Default: True.
progress_bar (bool, optional) – Display a download progress bar. Default: True
-
classmethod
from_json
(data: Dict[str, Any], client: FractalClient = None) → Collection¶ Creates a new class from a JSON blob
- Parameters
data (Dict[str, Any]) – The JSON blob to create a new class from.
client (FractalClient, optional) – A FractalClient connected to a server
- Returns
A constructed collection.
- Return type
Collection
-
classmethod
from_server
(client: FractalClient, name: str) → Collection¶ Creates a new class from a server
- Parameters
client (FractalClient) – A FractalClient connected to a server
name (str) – The name of the collection to pull from.
- Returns
A constructed collection.
- Return type
Collection
-
get_entries
(subset: Optional[List[str]] = None, force: bool = False) → pandas.core.frame.DataFrame¶ Provides a list of entries for the dataset
- Parameters
subset (Optional[List[str]], optional) – The indices of the desired subset. Return all indices if subset is None.
force (bool, optional) – skip cache
- Returns
A dataframe containing entry names and specifciations. For Dataset, specifications are molecule ids. For ReactionDataset, specifications describe reaction stoichiometry.
- Return type
pd.DataFrame
-
get_index
(subset: Optional[List[str]] = None, force: bool = False) → List[str]¶ Returns the current index of the database.
- Returns
ret – The names of all reactions in the database
- Return type
List[str]
-
get_keywords
(alias: str, program: str, return_id: bool = False) → Union[KeywordSet, str]¶ Pulls the keywords alias from the server for inspection.
- Parameters
alias (str) – The keywords alias.
program (str) – The program the keywords correspond to.
return_id (bool, optional) – If True, returns the
id
rather than theKeywordSet
object. Description
- Returns
The requested
KeywordSet
orKeywordSet
id
.- Return type
Union[‘KeywordSet’, str]
-
get_molecules
(subset: Optional[Union[str, Set[str]]] = None, stoich: Union[str, List[str]] = 'default', force: bool = False) → pandas.core.frame.DataFrame[source]¶ Queries full Molecules from the database.
- Parameters
subset (Optional[Union[str, Set[str]]], optional) – The index subset to query on
stoich (Union[str, List[str]], optional) – The stoichiometries to pull from, either a single or multiple stoichiometries
force (bool, optional) – Force pull of molecules from server
- Returns
Indexed Molecules which match the stoich and subset string.
- Return type
pd.DataFrame
-
get_records
(method: str, basis: Optional[str] = None, *, keywords: Optional[str] = None, program: Optional[str] = None, stoich: Union[str, List[str]] = 'default', include: Optional[List[str]] = None, subset: Optional[Union[str, Set[str]]] = None) → Union[pandas.core.frame.DataFrame, ResultRecord][source]¶ Queries the local Portal for the requested keys and stoichiometry.
- Parameters
method (str) – The computational method to query on (B3LYP)
basis (Optional[str], optional) – The computational basis to query on (6-31G)
keywords (Optional[str], optional) – The option token desired
program (Optional[str], optional) – The program to query on
stoich (Union[str, List[str]], optional) – The given stoichiometry to compute.
include (Optional[Dict[str, bool]], optional) – The attribute project to perform on the query, otherwise returns ResultRecord objects.
subset (Optional[Union[str, Set[str]]], optional) – The index subset to query on
- Returns
The name of the queried column
- Return type
Union[pd.DataFrame, ‘ResultRecord’]
-
get_rxn
(name: str) → qcportal.collections.reaction_dataset.ReactionEntry[source]¶ Returns the JSON object of a specific reaction.
- Parameters
name (str) – The name of the reaction to query
- Returns
ret – The JSON representation of the reaction
- Return type
dict
-
get_values
(method: Optional[Union[List[str], str]] = None, basis: Optional[Union[List[str], str]] = None, keywords: Optional[str] = None, program: Optional[str] = None, driver: Optional[str] = None, stoich: str = 'default', name: Optional[Union[List[str], str]] = None, native: Optional[bool] = None, subset: Optional[Union[List[str], str]] = None, force: bool = False) → pandas.core.frame.DataFrame[source]¶ Obtains values from the known history from the search paramaters provided for the expected return_result values. Defaults to the standard programs and keywords if not provided.
Note that unlike get_records, get_values will automatically expand searches and return multiple method and basis combinations simultaneously.
None is a wildcard selector. To search for None, use “None”.
- Parameters
method (Optional[Union[str, List[str]]], optional) – The computational method (B3LYP)
basis (Optional[Union[str, List[str]]], optional) – The computational basis (6-31G)
keywords (Optional[str], optional) – The keyword alias
program (Optional[str], optional) – The underlying QC program
driver (Optional[str], optional) – The type of calculation (e.g. energy, gradient, hessian, dipole…)
stoich (str, optional) – Stoichiometry of the reaction.
name (Optional[Union[str, List[str]]], optional) – Canonical name of the record. Overrides the above selectors.
native (Optional[bool], optional) – True: only include data computed with QCFractal False: only include data contributed from outside sources None: include both
subset (Optional[List[str]], optional) – The indices of the desired subset. Return all indices if subset is None.
force (bool, optional) – Data is typically cached, forces a new query if True
- Returns
A DataFrame of values with columns corresponding to methods and rows corresponding to reaction entries. Contributed (native=False) columns are marked with “(contributed)” and may include units in square brackets if their units differ in dimensionality from the ReactionDataset’s default units.
- Return type
DataFrame
-
list_keywords
() → pandas.core.frame.DataFrame¶ Lists keyword aliases for each program in the dataset.
- Returns
A dataframe containing programs, keyword aliases, KeywordSet ids, and whether those keywords are the default for a program. Indexed on program.
- Return type
pd.DataFrame
-
list_records
(dftd3: bool = False, pretty: bool = True, **search: Optional[Union[List[str], str]]) → pandas.core.frame.DataFrame¶ Lists specifications of available records, i.e. method, program, basis set, keyword set, driver combinations None is a wildcard selector. To search for None, use “None”.
- Parameters
pretty (bool) – Replace NaN with “None” in returned DataFrame
**search (Dict[str, Optional[str]]) – Allows searching to narrow down return.
- Returns
Record specifications matching **search.
- Return type
DataFrame
-
list_values
(method: Optional[Union[List[str], str]] = None, basis: Optional[Union[List[str], str]] = None, keywords: Optional[str] = None, program: Optional[str] = None, driver: Optional[str] = None, name: Optional[Union[List[str], str]] = None, native: Optional[bool] = None, force: bool = False) → pandas.core.frame.DataFrame¶ Lists available data that may be queried with get_values. Results may be narrowed by providing search keys. None is a wildcard selector. To search for None, use “None”.
- Parameters
method (Optional[Union[str, List[str]]], optional) – The computational method (B3LYP)
basis (Optional[Union[str, List[str]]], optional) – The computational basis (6-31G)
keywords (Optional[str], optional) – The keyword alias
program (Optional[str], optional) – The underlying QC program
driver (Optional[str], optional) – The type of calculation (e.g. energy, gradient, hessian, dipole…)
name (Optional[Union[str, List[str]]], optional) – The canonical name of the data column
native (Optional[bool], optional) – True: only include data computed with QCFractal False: only include data contributed from outside sources None: include both
force (bool, optional) – Data is typically cached, forces a new query if True
- Returns
A DataFrame of the matching data specifications
- Return type
DataFrame
-
parse_stoichiometry
(stoichiometry: List[Tuple[Union[qcelemental.models.molecule.Molecule, str], float]]) → Dict[str, float][source]¶ Parses a stiochiometry list.
- Parameters
stoichiometry (list) – A list of tuples describing the stoichiometry.
- Returns
A dictionary describing the stoichiometry for use in the database. Keys are molecule hashes. Values are stoichiometric coefficients.
- Return type
Dict[str, float]
Notes
- This function attempts to convert the molecule into its corresponding hash. The following will happen depending on the form of the Molecule.
Molecule hash - Used directly in the stoichiometry.
Molecule class - Hash is obtained and the molecule will be added to the database upon saving.
Molecule string - Molecule will be converted to a Molecule class and the same process as the above will occur.
-
save
(client: Optional[FractalClient] = None) → ObjectId¶ Uploads the overall structure of the Collection (indices, options, new molecules, etc) to the server.
- Parameters
client (FractalClient, optional) – A FractalClient connected to a server to upload to
- Returns
The ObjectId of the saved collection.
- Return type
ObjectId
-
set_default_benchmark
(benchmark: str) → bool¶ Sets the default benchmark value.
- Parameters
benchmark (str) – The benchmark to default to.
-
set_default_program
(program: str) → bool¶ Sets the default program.
- Parameters
program (str) – The program to default to.
-
set_view
(path: Union[str, pathlib.Path]) → None¶ Set a dataset to use a local view.
- Parameters
path (Union[str, Path]) – path to an hdf5 file representing a view for this dataset
-
statistics
(stype: str, value: str, bench: Optional[str] = None, **kwargs: Dict[str, Any]) → Union[numpy.ndarray, pandas.core.series.Series, numpy.float64]¶ Provides statistics for various columns in the underlying dataframe.
- Parameters
stype (str) – The type of statistic in question
value (str) – The method string to compare
bench (str, optional) – The benchmark method for the comparison, defaults to default_benchmark.
kwargs (Dict[str, Any]) – Additional kwargs to pass to the statistics functions
- Returns
Returns an ndarray, Series, or float with the requested statistics depending on input.
- Return type
np.ndarray, pd.Series, float
-
ternary
(cvals=None)[source]¶ Plots a ternary diagram of the DataBase if available
- Parameters
cvals (None, optional) – Description
-
to_file
(path: Union[str, pathlib.Path], encoding: str) → None¶ Writes a view of the dataset to a file
- Parameters
path (Union[str, Path]) – Where to write the file
encoding (str) – Options: plaintext, hdf5
-
to_json
(filename: Optional[str] = None)¶ If a filename is provided, dumps the file to disk. Otherwise returns a copy of the current data.
- Parameters
filename (str, Optional, Default: None) – The filename to drop the data to.
- Returns
ret – A JSON representation of the Collection
- Return type
dict
-
visualize
(method: Optional[str] = None, basis: Optional[str] = None, keywords: Optional[str] = None, program: Optional[str] = None, stoich: str = 'default', groupby: Optional[str] = None, metric: str = 'UE', bench: Optional[str] = None, kind: str = 'bar', return_figure: Optional[bool] = None, show_incomplete: bool = False) → plotly.Figure[source]¶ - Parameters
method (Optional[str], optional) – Methods to query
basis (Optional[str], optional) – Bases to query
keywords (Optional[str], optional) – Keyword aliases to query
program (Optional[str], optional) – Programs aliases to query
stoich (str, optional) – Stoichiometry to query
groupby (Optional[str], optional) – Groups the plot by this index.
metric (str, optional) – The metric to use either UE (unsigned error) or URE (unsigned relative error)
bench (Optional[str], optional) – The benchmark level of theory to use
kind (str, optional) – The kind of chart to produce, either ‘bar’ or ‘violin’
return_figure (Optional[bool], optional) – If True, return the raw plotly figure. If False, returns a hosted iPlot. If None, return a iPlot display in Jupyter notebook and a raw plotly figure in all other circumstances.
show_incomplete (bool, optional) – Display statistics method/basis set combinations where results are incomplete
- Returns
The requested figure.
- Return type
plotly.Figure